Math 196-47, Mr. Church

Some sample problems for the second midterm;
or, My thinking on what questions are reasonable to ask.

Appropriate:

- Use Cramer's rule to find the solution to $A \vec{x}=\vec{b}$ (with explicit matrices/vectors, not letters).
- Assume that S is a collection of vectors in \mathbb{R}^{n}. State the mathematical definition of the phrase " S is a subspace".
- Given some (explicit) set S, determine whether it is a subspace.
- Are these (explicit) vectors linearly independent? Do they span \mathbb{R}^{n} ? Are they a basis for \mathbb{R}^{n} ?
- Assume that S is a subspace of \mathbb{R}^{n}. State the definition of the dimension of S.
- Let A be an $m \times n$ matrix. State the definition of the row space (or column space, or null space) of A. Find a basis.
- Find a basis for the subspace $\{(2 t-u, 3 t, t+u, t, u)\}$.
- State the triangle inequality.
- Compute the angle between the vectors $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $\left[\begin{array}{l}0 \\ 1\end{array}\right]$.
- You may need to use the "bilinearity" rules of inner product

$$
\text { e.g. }\left\langle\vec{v}, \overrightarrow{w_{1}}+\overrightarrow{w_{2}}\right\rangle=\left\langle\vec{v}, \overrightarrow{w_{1}}\right\rangle+\left\langle\vec{v}, \overrightarrow{w_{2}}\right\rangle .
$$

- Let \vec{v} be the vector in the plane

$$
\vec{v}=\left[\begin{array}{l}
2 \\
3
\end{array}\right] .
$$

Compute the vector obtained from \vec{v} by rotating it 135° counterclockwise.

- Are these vectors perpendicular? Compute the projection of this vector onto that vector.
- Find a basis for the subspace $\left\{v_{1}, v_{2}, v_{3}\right\}^{\perp}$ (given explicit vectors).
- Is this matrix orthogonal? Is this collection of vectors an orthonormal basis?
- Prove that an orthogonal matrix can never have 2 as an entry.

Inappropriate: (Mostly by "inappropriate" I mean "too proof-y")

- HW9, question 2.
- Prove that every subspace has a basis.
- Prove that a matrix preserving lengths preserves inner products.
- Anything that requires row-reducing a 4×4 matrix (I already know you can do that).

