Math 196-47, Mr. Church
Notes from class, Friday, May 8, 2009.

Orthogonal complements

- First, recall that $\langle v, w\rangle=\|v\|\|w\| \cos \theta$, where θ is the angle between v and w. This can be used to calculate the angle between two vectors.
- Since lines are perpendicular if they meet at a right angle (so that $\cos \theta=0$), we make the following definition:

Definition. We say that v and w are perpendicular (or orthogonal) and write $v \perp w$ if $\langle v, w\rangle=0$.

- Given a vector $v \in \mathbb{R}^{n}$, we define

$$
v^{\perp}=\left\{w \in \mathbb{R}^{n} \mid\langle v, w\rangle=0\right\}
$$

to be the set of vectors orthogonal to v. More generally, if S is any collection of vectors in \mathbb{R}^{n}, we define

$$
S^{\perp}=\left\{w \in \mathbb{R}^{n} \mid\langle v, w\rangle=0 \text { for all vectors } v \in S\right\}
$$

We call v^{\perp} or S^{\perp} the "orthogonal complement" to v or S respectively.

Theorem. S^{\perp} is always a subspace. (In particular, v^{\perp} is a subspace.)

Remark. The proof of this theorem uses the "bilinearity" of the inner product $\langle\cdot, \cdot\rangle$.

Orthogonal matrices

- Now we change focus somewhat. Given an $n \times n$ matrix A, we can think of a "function" that takes in a vector $v \in \mathbb{R}^{n}$ and spits out the vector $A v$. We can ask the following question: for which matrices A does this function preserve the length of all vectors? That is, for which A is it true that $\|A v\|=$ $\|v\|$ for all vectors $v \in \mathbb{R}^{n}$? (Matrices of this kind will be called "orthogonal matrices" and we will continue with them on Monday.)
- The first observation is that a matrix that preserves all lengths also preserves all angles. More precisely:

Theorem. If $\|A v\|=\|v\|$ for all vectors $v \in \mathbb{R}^{n}$, then it is also true that $\langle A v, A w\rangle=\langle v, w\rangle$ for all $v, w \in \mathbb{R}^{n}$.

Remark. The proof uses the fact that

$$
2\langle v, w\rangle=\|v+w\|^{2}-\|v\|^{2}-\|w\|^{2} .
$$

- Now let's restrict our attention to \mathbb{R}^{2} (that is, to the plane). First notice that a rotation of the plane by the angle θ preserves the length of all vectors. So does a reflection across a line through the origin. We will focus on the first kind, and we define

$$
R_{\theta}=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

Theorem. R_{θ} rotates the plane by angle θ. That is, if you take the vector v and rotate it by angle θ, you get the vector $R_{\theta} v$.

Proof. (This is just in case anyone wants to see how the proof works. I didn't do this in class.) If v in polar coordinates is (r, ϕ), then after rotating by angle theta it will be $(r, \phi+\theta)$. That is, if we write $v=\left[\begin{array}{c}r \cos \phi \\ r \sin \phi\end{array}\right]$, we want to show that $R_{\theta} v=$ $\left[\begin{array}{c}r \cos (\phi+\theta) \\ r \sin (\phi+\theta)\end{array}\right]$. Writing out the matrix multiplication, we have that
$R_{\theta} v=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]\left[\begin{array}{c}r \cos \phi \\ r \sin \phi\end{array}\right]=\left[\begin{array}{c}r(\cos \theta \cos \phi-\sin \theta \sin \phi) \\ r(\sin \theta \cos \phi+\cos \theta \sin \phi)\end{array}\right]$
But the trigonometric addition formulas say that $\cos (\theta+\phi)=$ $\cos \theta \cos \phi-\sin \theta \sin \phi$ and $\sin (\theta+\phi)=\sin \theta \cos \phi+\cos \theta \sin \phi$, so we conclude that

$$
R_{\theta} v=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{c}
r \cos \phi \\
r \sin \phi
\end{array}\right]=\left[\begin{array}{c}
r \cos (\phi+\theta) \\
r \sin (\phi+\theta)
\end{array}\right]
$$

as desired.

