Math 196-47, Mr. Church

Notes from class, Friday, May 8, 2009.

Orthogonal complements

- First, recall that $\langle v, w \rangle = ||v|| ||w|| \cos \theta$, where θ is the angle between v and w. This can be used to calculate the angle between two vectors.
- Since lines are perpendicular if they meet at a right angle (so that $\cos \theta = 0$), we make the following definition:

Definition. We say that v and w are perpendicular (or orthogonal) and write $v \perp w$ if $\langle v, w \rangle = 0$.

• Given a vector $v \in \mathbb{R}^n$, we define

$$v^{\perp} = \left\{ w \in \mathbb{R}^n \big| \langle v, w \rangle = 0 \right\}$$

to be the set of vectors orthogonal to v. More generally, if S is any collection of vectors in \mathbb{R}^n , we define

 $S^{\perp} = \left\{ w \in \mathbb{R}^n \middle| \langle v, w \rangle = 0 \text{ for all vectors } v \in S \right\}$

We call v^{\perp} or S^{\perp} the "orthogonal complement" to v or S respectively.

Theorem. S^{\perp} is always a subspace. (In particular, v^{\perp} is a subspace.)

Remark. The proof of this theorem uses the "bilinearity" of the inner product $\langle \cdot, \cdot \rangle$.

Orthogonal matrices

- Now we change focus somewhat. Given an $n \times n$ matrix A, we can think of a "function" that takes in a vector $v \in \mathbb{R}^n$ and spits out the vector Av. We can ask the following question: for which matrices A does this function preserve the length of all vectors? That is, for which A is it true that ||Av|| = ||v|| for all vectors $v \in \mathbb{R}^n$? (Matrices of this kind will be called "orthogonal matrices" and we will continue with them on Monday.)
- The first observation is that a matrix that preserves all lengths also preserves all angles. More precisely:

Theorem. If ||Av|| = ||v|| for all vectors $v \in \mathbb{R}^n$, then it is also true that $\langle Av, Aw \rangle = \langle v, w \rangle$ for all $v, w \in \mathbb{R}^n$.

Remark. The proof uses the fact that

$$2\langle v, w \rangle = ||v + w||^2 - ||v||^2 - ||w||^2$$

• Now let's restrict our attention to \mathbb{R}^2 (that is, to the plane). First notice that a rotation of the plane by the angle θ preserves the length of all vectors. So does a reflection across a line through the origin. We will focus on the first kind, and we define

$$R_{\theta} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

Theorem. R_{θ} rotates the plane by angle θ . That is, if you take the vector v and rotate it by angle θ , you get the vector $R_{\theta}v$.

Proof. (This is just in case anyone wants to see how the proof works. I didn't do this in class.) If v in polar coordinates is (r, ϕ) , then after rotating by angle theta it will be $(r, \phi + \theta)$. That is, if we write $v = \begin{bmatrix} r \cos \phi \\ r \sin \phi \end{bmatrix}$, we want to show that $R_{\theta}v = \begin{bmatrix} r \cos(\phi + \theta) \\ r \sin(\phi + \theta) \end{bmatrix}$. Writing out the matrix multiplication, we have that

$$R_{\theta}v = \begin{bmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} r\cos\phi\\ r\sin\phi \end{bmatrix} = \begin{bmatrix} r(\cos\theta\cos\phi - \sin\theta\sin\phi)\\ r(\sin\theta\cos\phi + \cos\theta\sin\phi) \end{bmatrix}$$

But the trigonometric addition formulas say that $\cos(\theta + \phi) = \cos \theta \cos \phi - \sin \theta \sin \phi$ and $\sin(\theta + \phi) = \sin \theta \cos \phi + \cos \theta \sin \phi$, so we conclude that

$$R_{\theta}v = \begin{bmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} r\cos\phi\\ r\sin\phi \end{bmatrix} = \begin{bmatrix} r\cos(\phi+\theta)\\ r\sin(\phi+\theta) \end{bmatrix}$$

as desired.