1. Exercise 6.2.2. (You do not need to sketch anything.)

2. Let \(\vec{a}, \vec{b}, \vec{c} \) be nonzero vectors in \(\mathbb{R}^n \) that are pairwise orthogonal (that is, \(\langle \vec{a}, \vec{b} \rangle = 0 \), \(\langle \vec{b}, \vec{c} \rangle = 0 \), and \(\langle \vec{a}, \vec{c} \rangle = 0 \)). Show that \(\{ \vec{a}, \vec{b}, \vec{c} \} \) are linearly independent.

3. Which of the following matrices are orthogonal?
 (a) \[
 \begin{bmatrix}
 0 & 0 & 1 \\
 -1 & 0 & 0 \\
 0 & -1 & 0
 \end{bmatrix}
 \]
 (b) \[
 \begin{bmatrix}
 1 & 1 \\
 -1 & 1
 \end{bmatrix}
 \]
 (c) \[
 \begin{bmatrix}
 1/2 & \sqrt{3}/2 \\
 -\sqrt{3}/2 & 1/2
 \end{bmatrix}
 \]
 (d) \[
 \begin{bmatrix}
 1/\sqrt{3} & 1/\sqrt{3} & 1/\sqrt{3} \\
 1/\sqrt{3} & 1/\sqrt{3} & 1/\sqrt{3} \\
 1/\sqrt{3} & 1/\sqrt{3} & 1/\sqrt{3}
 \end{bmatrix}
 \]

4. Prove that an orthogonal matrix can never have 2 as one of its entries. (For example, this implies \[
 \begin{bmatrix}
 2 & 1 \\
 1 & 1
 \end{bmatrix}
 \] cannot be orthogonal.)