Math 196-47, Mr. Church, Homework 9

Due at the beginning of class on Wednesday, May 13.
Please staple your homework.

1. Exercise 6.2.2. (You do not need to sketch anything.)
2. Let \vec{a}, \vec{b} and \vec{c} be nonzero vectors in \mathbb{R}^{n} that are pairwise orthogonal (that is, $\langle\vec{a}, \vec{b}\rangle=0$, $\langle\vec{b}, \vec{c}\rangle=0$, and $\langle\vec{a}, \vec{c}\rangle=0$). Show that $\{\vec{a}, \vec{b}, \vec{c}\}$ are linearly independent.
3. Which of the following matrices are orthogonal?
(a)

$$
\left[\begin{array}{ccc}
0 & 0 & 1 \\
-1 & 0 & 0 \\
0 & -1 & 0
\end{array}\right]
$$

(b)

$$
\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]
$$

(c)

$$
\left[\begin{array}{cc}
1 / 2 & \sqrt{3} / 2 \\
-\sqrt{3} / 2 & 1 / 2
\end{array}\right]
$$

(d)

$$
\left[\begin{array}{lll}
1 / \sqrt{3} & 1 / \sqrt{3} & 1 / \sqrt{3} \\
1 / \sqrt{3} & 1 / \sqrt{3} & 1 / \sqrt{3} \\
1 / \sqrt{3} & 1 / \sqrt{3} & 1 / \sqrt{3}
\end{array}\right]
$$

4. Prove that an orthogonal matrix can never have 2 as one of its entries. (For example, this implies $\left[\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right]$ cannot be orthogonal.)
