Math 196-47, Mr. Church, Homework 8 (Corrected)

Due at the beginning of class on Monday, May 11. Please staple your homework.

- 1. Exercise 6.1.2. [Recall that the dot appearing between two vectors $\vec{q} \cdot \vec{r}$ has the same meaning as the inner product $\langle \vec{q}, \vec{r} \rangle$.]
- 2. (Corrected) Exercise 6.2.6. (This previously said "Exercise 6.2.2"; that question will appear on Homework 9.)
- 3. Recall that if \vec{v} is a vector in \mathbb{R}^n , \vec{v}^{\perp} is defined to be the subspace of vectors perpendicular to \vec{v} :

$$\vec{v}^{\perp} = \left\{ \vec{w} \in \mathbb{R}^n \left| \langle \vec{v}, \vec{w} \rangle = 0 \right\} \right\}$$

(a) Let $\vec{a} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$. Find a parametrization of the subspace \vec{a}^{\perp} , find a basis, and find its

dimension. [Hint: find a system of linear equations whose solution set is \vec{a}^{\perp} .]

- (b) Let \vec{v} be a nonzero vector in \mathbb{R}^n . We saw in class that \vec{v}^{\perp} is a subspace. Find its dimension. [If you cannot give a rigorous justification, an intuitive one may receive partial credit.]
- 4. [This question will appear on Homework 9, due Wednesday, May 13.] Let \vec{a} , \vec{b} and \vec{c} be nonzero vectors in \mathbb{R}^n that are pairwise orthogonal (that is, $\langle \vec{a}, \vec{b} \rangle = 0$, $\langle \vec{b}, \vec{c} \rangle = 0$, and $\langle \vec{a}, \vec{c} \rangle = 0$). Show that $\{\vec{a}, \vec{b}, \vec{c}\}$ are linearly independent.