Math 196-47, Mr. Church, Homework 3

Due at the beginning of class on Friday, April 17. Please staple your homework.

- 1. Find the solution sets of the following systems of linear equations.
 - (a) x +z = 0 2y -z = 0 x -2y +2z = 0(b) x +z = 0 2y -z = 1 x -2y +2z = 1(c) x +z = 0 2y -z = 1 x -2y +2z = 1x -2y +2z = 0
 - (d) Describe the relation between the solution set of (a) and the solution sets of (b) and (c).
- 2. Determine whether each system has a solution, and if so whether the solution is unique, by computing the ranks of the associated matrix and of the augmented matrix. (Theorem 3.4.7 is what we're using here.)
 - (a)

	2x + y - z = 2
	y -2z = -1
	-2y + 4z = 2
	x + y + z = 3
(b)	
	a -2b +c = -1
	-2a $+b$ $+c$ $=1$
	a -5b +4c = -2
(c)	
	2x + y = 1
	-4x -2y = 3

3. "A system of linear equations can never have exactly two solutions."

In no more than a few sentences, use what we have learned about systems of equations to explain why this is true.