Math 196-47, Mr. Church, Homework 3

Due at the beginning of class on Friday, April 17.
Please staple your homework.

1. Find the solution sets of the following systems of linear equations.
(a)

$$
\begin{array}{rr}
x & +z
\end{array}=0
$$

(b)

$$
\begin{aligned}
x & +z
\end{aligned}=0
$$

(c)

$$
\begin{array}{rr}
x & +z
\end{array}=0
$$

(d) Describe the relation between the solution set of (a) and the solution sets of (b) and (c).
2. Determine whether each system has a solution, and if so whether the solution is unique, by computing the ranks of the associated matrix and of the augmented matrix. (Theorem 3.4.7 is what we're using here.)
(a)

$$
\begin{array}{cccc}
2 x & +y & -z & =2 \\
& y & -2 z & =-1 \\
& -2 y & +4 z & =2 \\
x & +y & +z & =3
\end{array}
$$

(b)

$$
\begin{array}{cccc}
a & -2 b & +c & =-1 \\
-2 a & +b & +c & =1 \\
a & -5 b & +4 c & =-2
\end{array}
$$

(c)

$$
\begin{array}{cc}
2 x & +y \\
=1 \\
-4 x & -2 y
\end{array}=3
$$

3. "A system of linear equations can never have exactly two solutions."

In no more than a few sentences, use what we have learned about systems of equations to explain why this is true.

