Math 196-47, Mr. Church, Homework 13

Due at the beginning of class on Wednesday, June 3. This is the last official homework assignment.

- 1. Exercise 8.2.6.
- 2. Consider \mathbb{R}^3 as 3-dimensional space in the usual way, with $e_1 = (1, 0, 0)$ the unit vector in the x direction, $e_2 = (0, 1, 0)$ the unit vector in the y direction, and $e_3 = (0, 0, 1)$.

Let R be the counter-clockwise rotation by 45° around the z axis. This is a linear transformation (you don't have to prove this). Find the standard matrix of R.

- 3. For each of the following, if the answer is yes, give an example; if the answer is no, give a justification. Recall that the identity map $\operatorname{id}_n : \mathbb{R}^n \to \mathbb{R}^n$ is defined by $\operatorname{id}_n(x) = x$.
 - (a) Is it possible to find linear transformations $T \colon \mathbb{R}^2 \to \mathbb{R}^1$ and $S \colon \mathbb{R}^1 \to \mathbb{R}^2$ so that $S \circ T = \mathrm{id}_2$?
 - (b) Is it possible to find linear transformations $T \colon \mathbb{R}^1 \to \mathbb{R}^2$ and $S \colon \mathbb{R}^2 \to \mathbb{R}^1$ so that $S \circ T = \mathrm{id}_1$?
 - (c) Is it possible to find a linear transformation $T \colon \mathbb{R}^3 \to \mathbb{R}^3$ so that T is one-to-one but not onto?
 - (d) Is it possible to find a linear transformation $T \colon \mathbb{R}^3 \to \mathbb{R}^3$ so that T is onto but not one-to-one?
- 4. Exericse 8.2.8.

5. [This question is not for credit; however, if you complete any part of it, I am happy to make comments and give feedback on your work. If you do this question, please turn it in by Friday, separately from your homework.] "Matrix multiplication and rank", on p. 268. You can think about part 5, but no need to write anything for it.

You may use the fact that if S and S' are two subspaces of \mathbb{R}^n , and S is contained in S', then dim $S \leq \dim S'$. (You can also think about why this is true.)