Math 196-47, Mr. Church, Homework 13

Due at the beginning of class on Wednesday, June 3.
This is the last official homework assignment.

1. Exercise 8.2.6.
2. Consider \mathbb{R}^{3} as 3 -dimensional space in the usual way, with $e_{1}=(1,0,0)$ the unit vector in the x direction, $e_{2}=(0,1,0)$ the unit vector in the y direction, and $e_{3}=(0,0,1)$.

Let R be the counter-clockwise rotation by 45° around the z axis. This is a linear transformation (you don't have to prove this). Find the standard matrix of R.
3. For each of the following, if the answer is yes, give an example; if the answer is no, give a justification. Recall that the identity map $\operatorname{id}_{n}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is defined by $\operatorname{id}_{n}(x)=x$.
(a) Is it possible to find linear transformations $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{1}$ and $S: \mathbb{R}^{1} \rightarrow \mathbb{R}^{2}$ so that $S \circ T=\mathrm{id}_{2}$?
(b) Is it possible to find linear transformations $T: \mathbb{R}^{1} \rightarrow \mathbb{R}^{2}$ and $S: \mathbb{R}^{2} \rightarrow \mathbb{R}^{1}$ so that $S \circ T=\mathrm{id}_{1}$?
(c) Is it possible to find a linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ so that T is one-to-one but not onto?
(d) Is it possible to find a linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ so that T is onto but not one-to-one?
4. Exericse 8.2.8.
5. [This question is not for credit; however, if you complete any part of it, I am happy to make comments and give feedback on your work. If you do this question, please turn it in by Friday, separately from your homework.] "Matrix multiplication and rank", on p. 268. You can think about part 5, but no need to write anything for it.

You may use the fact that if S and S^{\prime} are two subspaces of \mathbb{R}^{n}, and S is contained in S^{\prime}, then $\operatorname{dim} S \leq \operatorname{dim} S^{\prime}$. (You can also think about why this is true.)

