Math 196-47, Mr. Church, Homework 10

Due at the beginning of class on Friday, May 22.
Please staple your homework.

Leftovers:

1. Prove that $\operatorname{ker}(B)$ is contained in $\operatorname{ker}(A B)$; that is, show that every vector in the former subspace is also in the latter subspace.
2. (a) Prove that if A is an orthogonal matrix, then $\operatorname{det} A= \pm 1$.
(b) Give an example of an orthogonal matrix with $\operatorname{det} A=1$, and another example with $\operatorname{det} A=-1$.
3. Let $\vec{u}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right], \vec{v}=\left[\begin{array}{c}2 \\ 3 \\ -1\end{array}\right]$, and $\vec{w}=\left[\begin{array}{c}-1 \\ 0 \\ 2\end{array}\right]$.
(a) Compute the cross product $\vec{u} \times \vec{v}$.
(b) Compute the cross product $\vec{v} \times \vec{w}$.
(c) Compute the cross product $\vec{w} \times \vec{u}$.
(d) Use the properties of the cross product to compute $\vec{u} \times(\vec{v}+\vec{w})$ without doing any more calculations.

This week:
4. Find all the eigenvalues of the matrix $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$.
5. Find all the eigenvalues of the matrix $A=\left[\begin{array}{ll}1 & 4 \\ 1 & 1\end{array}\right]$.
6. Find all the eigenvalues of the matrix $A=\left[\begin{array}{ccc}0 & 1 & 0 \\ -4 & 4 & 0 \\ -6 & 9 & -1\end{array}\right]$. [Hint: one of them is -1 .]
7. Assume that A is a 3×3 matrix with eigenvalues 1,2 , and 7 . What can you say about the eigenvalues of A^{2} ? How about A^{-1} ?

