Elementary Number Theory
Math 175, Section 30, Autumn 2010
Shmuel Weinberger (shmuel@math.uchicago.edu)
Tom Church (tchurch@math.uchicago.edu) www.math.uchicago.edu/~tchurch/teaching/175/

Script 4: Quadratic Reciprocity

Fix a field R, and let $P(x)$ be a polynomial with coefficients in R; that is,

$$
P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0},
$$

with each $a_{i} \in R$. For any $r \in R$, we can evaluate the polynomial $P(x)$ at r to give a value $P(r) \in R$, defined by

$$
P(r)=a_{n} r^{n}+a_{n-1} r^{n-1}+\cdots+a_{2} r^{2}+a_{1} r+a_{0} \in R .
$$

Theorem 4.1 (Division algorithm for linear polynomials). For any $u \in R$, we can write $P(x)=(x-u) \cdot Q(x)+P(u)$ for some polynomial $Q(x)$.

An element $r \in R$ is called a root of the polynomial $P(x)$ if $P(r)=0$.
Theorem 4.2. If r is a root of $P(x)$, then $P(x)=(x-r) \cdot Q(x)$ for some polynomial $Q(x)$.
Exercise 4.3. If r_{1}, \ldots, r_{k} are distinct roots of $P(x)$, then

$$
P(x)=\left(x-r_{1}\right)\left(x-r_{2}\right) \cdots\left(x-r_{k}\right) \cdot Q(x)
$$

for some polynomial $Q(x)$.
Theorem 4.4. If $P(x)$ is a polynomial of degree n, then $P(x)$ has at most n distinct roots.

Definition 4.5. Fix $m>1$ and suppose $(a, m)=1$. If there exists $x \in \mathbb{Z}$ such that $x^{2} \equiv a(\bmod m)$, then a is called a quadratic residue $(\bmod m)$. If there does not exist such an $x \in \mathbb{Z}$, then a is called a quadratic nonresidue ($\bmod m$).

Definition 4.6. If p is an odd prime and $(a, p)=1$, then the Legendre symbol $\left(\frac{a}{p}\right)$ is defined as follows:

$$
\left(\frac{a}{p}\right)= \begin{cases}+1, & \text { if } a \text { is a quadratic residue }(\bmod p) \\ -1, & \text { if } a \text { is a quadratic nonresidue }(\bmod p)\end{cases}
$$

Theorem 4.7. Let p be an odd prime. Then:
i. $\left(\begin{array}{l}\left.\frac{a}{p}\right) \equiv a^{(p-1) / 2}(\bmod p)\end{array}\right.$
ii. $\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)=\left(\frac{a b}{p}\right)$
iii. If $(a, p)=1$, then $\left(\frac{a^{2}}{p}\right)=1$ and $\left(\frac{a^{2} b}{p}\right)=\left(\frac{b}{p}\right)$.
iv. $\left(\frac{1}{p}\right)=1$ and $\left(\frac{-1}{p}\right)=(-1)^{(p-1) / 2}$

Definition 4.8. Fix an odd integer $n>0$. We say that a subset $S \subset\{1, \ldots, n-1\}$ is a half-set (modulo n) if

1. every element of S is invertible modulo n, and
2. for every y which is invertible modulo n, either there exists $x \in S$ s.t. $y \equiv x(\bmod n)$ or there exists $x \in S$ s.t. $-y \equiv x(\bmod n)$, but not both.

A half-set's purpose in life is to have all of its elements multiplied together: we write \prod_{S} for the product $\prod_{s \in S} s$.

Theorem 4.9. If S and T are both half-sets modulo n, then $\prod_{S} \equiv \pm \prod_{T}(\bmod n)$.

Lemma 4.10. Let p be an odd prime. Let S be the half-set $S=\left\{1, \ldots, \frac{p-1}{2}\right\}$, and let $T=\{2,4, \ldots, p-1\}$. Then T is a half-set modulo p, and $\prod_{T} \equiv\left(\frac{2}{p}\right) \prod_{S}(\bmod p)$.
Theorem 4.11. Let p be an odd prime. Then $\left(\frac{2}{p}\right)=1$ if $p \equiv 1$ or $p \equiv 7(\bmod 8)$, while $\left(\frac{2}{p}\right)=-1$ if $p \equiv 3$ or $p \equiv 5(\bmod 8)$. This can be summarized as $\left(\frac{2}{p}\right)=(-1)^{\left(p^{2}-1\right) / 8}$.

Lemma 4.12. Let q be an odd prime. Then $\left[\left(\frac{q-1}{2}\right)!\right]^{2} \equiv(-1)^{\frac{q-1}{2}}(-1)(\bmod q)$.

In the remainder of this script, we prove Quadratic Reciprocity:

Theorem 4.13 (Quadratic reciprocity). Let p and q be distinct odd primes. Then

- if $p \equiv 1(\bmod 4)$ or $q \equiv 1(\bmod 4)$, p is a quadratic residue $(\bmod q)$ if and only if q is a quadratic residue $(\bmod p)$;
- if $p \equiv 3(\bmod 4)$ and $q \equiv 3(\bmod 4)$, p is a quadratic residue $(\bmod q)$ if and only if q is not a quadratic residue $(\bmod p)$.

Lemma 4.14. This theorem can be summarized as:

$$
\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=(-1)^{\frac{p-1}{2} \frac{q-1}{2}}
$$

For the rest of the sheet, fix odd primes p and q. Let

$$
\begin{aligned}
S & =\left\{\left.1 \leq k \leq \frac{p q-1}{2} \right\rvert\,(k, p q)=1\right\}, \\
A & =\left\{\left.1 \leq k \leq \frac{p q-1}{2} \right\rvert\,(k, p)=1\right\}, \\
\text { and } B & =\left\{1 \leq k \leq \frac{p q-1}{2}|q| k\right\} .
\end{aligned}
$$

Lemma 4.15. S is a half-set modulo $p q$, the set B is contained in the set A, and the set S is the difference $A \backslash B$. Moreover we can write

$$
A=\left\{a+p x \mid 1 \leq a \leq p-1,0 \leq x<\frac{q-1}{2}\right\} \cup\left\{a+p x \left\lvert\, 1 \leq a \leq \frac{p-1}{2}\right., x=\frac{q-1}{2}\right\}
$$

and

$$
B=\left\{q a \left\lvert\, 1 \leq a \leq \frac{p-1}{2}\right.\right\}
$$

Lemma 4.16. We have: ${ }^{1}$

$$
\begin{array}{rlr}
\prod_{A} & \equiv(p-1) \frac{q-1}{2}\left(\frac{p-1}{2}\right)! & (\bmod p) \\
\text { and } \quad \prod_{B} & \equiv q^{\frac{p-1}{2}}\left(\frac{p-1}{2}\right)! & (\bmod p)
\end{array}
$$

Lemma 4.17. Show that

$$
\begin{aligned}
& \prod_{S} \equiv(-1)^{\frac{q-1}{2}}\left(\frac{q}{p}\right) \\
\text { and } \quad & (\bmod p) \\
\prod_{S} \equiv(-1)^{\frac{p-1}{2}}\left(\frac{p}{q}\right) & (\bmod q)
\end{aligned}
$$

[^0]Let

$$
T=\left\{\begin{array}{l|l}
k \in \mathbb{Z} & \begin{array}{l}
1 \leq k<p q \\
k \equiv a \quad(\bmod p) \text { for } 1 \leq a \leq p-1 \\
k \equiv b \quad(\bmod q) \text { for } 1 \leq b \leq \frac{q-1}{2}
\end{array}
\end{array}\right\}
$$

Lemma 4.18. T is a half-set modulo $p q$, with

$$
\begin{array}{rlr}
\Pi_{T} & \equiv[(p-1)!]^{\frac{q-1}{2}} & (\bmod p) \\
\text { and } \quad \Pi_{T} & \equiv\left[\left(\frac{q-1}{2}\right)!\right]^{p-1} & (\bmod q)
\end{array}
$$

Conclude that

$$
\begin{array}{rll}
& \Pi_{T} & \equiv(-1)^{\frac{q-1}{2}} \\
\text { and } & (\bmod p) \\
\prod_{T} \equiv(-1)^{\frac{q-1}{2} \frac{p-1}{2}}(-1)^{\frac{p-1}{2}} & (\bmod q) .
\end{array}
$$

Theorem 4.19.

$$
\begin{aligned}
\text { If }\left(\frac{q}{p}\right) & \equiv 1 \quad(\bmod p), \quad \text { then } \quad\left(\frac{p}{q}\right) \equiv(-1)^{\frac{p-1}{2} \frac{q-1}{2}} \quad(\bmod q), \\
\text { while if }\left(\frac{q}{p}\right) & \equiv-1 \quad(\bmod p), \quad \text { then }-\left(\frac{p}{q}\right) \equiv(-1)^{\frac{p-1}{2} \frac{q-1}{2}} \quad(\bmod q) .
\end{aligned}
$$

Theorem 4.13 (Quadratic reciprocity). Let p and q be distinct odd primes. Then

- if $p \equiv 1(\bmod 4)$ or $q \equiv 1(\bmod 4)$, p is a quadratic residue $(\bmod q)$ if and only if q is a quadratic residue $(\bmod p)$;
- if $p \equiv 3(\bmod 4)$ and $q \equiv 3(\bmod 4)$,
p is a quadratic residue $(\bmod q)$ if and only if q is not a quadratic residue $(\bmod p)$.

[^0]: ${ }^{1}$ Both are $\bmod p$, this is not a typo.

