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Script 3: Congruence in the Integers

Definition 3.1. Fix n ∈ Z with n > 1. We say that two integers a and b are congruent

modulo n and write a ≡ b (mod n) provided that n | (b− a).

Theorem 3.2. Fix n > 1. Then congruence modulo n is an equivalence relation on Z.

That is:

(i) If a ∈ Z, then a ≡ a (mod n).

(ii) If a, b ∈ Z, then a ≡ b (mod n) if and only if b ≡ a (mod n).

(iii) If a, b, c ∈ Z and a ≡ b (mod n) and b ≡ c (mod n), then a ≡ c (mod n).

Theorem 3.3. If a ≡ b (mod n) and c ≡ d (mod n), then

(i) a+ c ≡ b+ d (mod n)

(ii) a · c ≡ b · d (mod n)

Theorem 3.4. If a ≡ b (mod n), then ac ≡ bc (mod nc) for any c > 0.

Theorem 3.5. If (a, n) = 1, then there exists b ∈ Z such that a · b ≡ 1 (mod n).

Theorem 3.6. Given c ∈ Z, if (a, n) = 1, then the congruence ax ≡ c (mod n) has a

solution for x in the integers.
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Exercise 3.7. Solve the following congruences for x:

a) 3x ≡ 1 (mod 7)

b) 8x ≡ 11 (mod 23)

c) 25x+ 1 ≡ 0 (mod 126)

d) 22x ≡ 2 (mod 178)

Theorem 3.8. If a and n are relatively prime, then

ax ≡ ay (mod n) if and only if x ≡ y (mod n).

Theorem 3.9. If m = (a, n), then

ax ≡ ay (mod n) if and only if x ≡ y (mod
n

m
).

Definition 3.10. A number system (a collection of elements equipped with an addition op-

eration and a multiplication operation) is called a commutative ring with identity (sometimes

just called a ring if the context is clear) if it satisfies Axioms A1–A5, M1–M4, and D.

Definition 3.11. A number system is called a field if it satisfies Axioms A1–A5, M1–M4,

and D (i.e. it is a ring), and in addition satisfies Axiom M5, which states that every nonzero

element has a multiplicative inverse:

M5. (Multiplicative Inverses) For each nonzero element a 6= 0, there is a unique element

a−1 such that a · a−1 = 1 and a−1 · a = 1.

Definition 3.12. Fix n ∈ Z with n > 1. For an integer a ∈ Z, the residue class of a modulo

n, or sometimes just the residue class of a, is the set of all integers congruent to a (mod n):

[a] =
{
b ∈ Z

∣∣ a ≡ b (mod n)
}

Exercise 3.13. Given a, b ∈ Z, we have

[a] = [b] if and only if a ≡ b (mod n)

Theorem 3.14. The number of distinct residue classes modulo n is n.

Theorem 3.15. If [a] = [b], then (a, n) = (b, n).
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Definition 3.16. Fix n > 1. We define the number system Z/nZ to be the set of residue

classes modulo n. We define addition and multiplication in Z/nZ as follows:

[a] + [b] = [a+ b] for a, b ∈ Z

[a] · [b] = [a · b] for a, b ∈ Z

Theorem 3.17. Show that addition and multiplication are well-defined in Z/nZ.

Exercise 3.18. Check that Z/nZ is a commutative ring with identity for any n > 1.

Theorem 3.19. Show that Z/pZ is a field if and only if p is prime.

Theorem 3.20. If p is prime and a, b ∈ Z/pZ, then a 6= 0 and b 6= 0 implies ab 6= 0.

Definition 3.21. If R is a commutative ring with identity, then an element x ∈ R is called

a unit if x has a multiplicative inverse in R. We write R× (pronounced “R-cross”) for the

set of invertible elements:

R× =
{
x ∈ R

∣∣x · y = 1 for some y ∈ R
}

Theorem 3.22. For any ring R, the set R× is closed under multiplication.

Theorem 3.23 (Wilson’s Theorem). If p is prime, then (p− 1)! ≡ −1 (mod p).

(It may be helpful to consider p = 2 as a separate case.)

Exercise 3.24. If p is prime and a ∈ Z/pZ is nonzero, the sets{
x
∣∣x ∈ Z/pZ, x 6= 0

}
and

{
ax

∣∣x ∈ Z/pZ, x 6= 0} are equal.

Theorem 3.25. If p is prime and a ∈ Z with p 6 | a, then ap−1 ≡ 1 (mod p).

Theorem 3.26 (Fermat’s Little Theorem). If p is prime and a ∈ Z, then ap ≡ a (mod p).

Theorem 3.27. Let p be prime. Then x2 ≡ 1 (mod p) if and only if x ≡ ±1 (mod p).

Theorem 3.28. Let p be an odd prime. Then the congruence x2 ≡ −1 (mod p) has

solutions if and only if p ≡ 1 (mod 4).

Exercise 3.29. If q is prime and q ≡ 3 (mod 4), and d ∈ Z/qZ, then d and −d cannot

both be squares1 in Z/qZ.

Theorem 3.30. Let q be a prime factor of a2 + b2. If q ≡ 3 (mod 4), then q|a and q|b.

1As you would expect, an element of a ring is called a square if it is equal to y2 for some element y.
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We state the next theorem before giving a sequence of lemmas that leads to its proof.

Theorem 3.31. If p is a prime such that p ≡ 1 (mod 4), there exist integers a, b such that

p = a2 + b2.

For Lemmas 3.32 through 3.35, assume the following:

Let p be prime such that p ≡ 1 (mod 4).
Let k be the greatest integer less than

√
p, and let S = {0, 1, . . . , k}.

Let x be an integer such that x2 ≡ −1 (mod p) (as per Thm. 30).

Lemma 3.32. |S × S| > p.

Lemma 3.33. There exist two distinct pairs (u1, v1), (u2, v2) ∈ S × S such that

u1 + xv1 ≡ u2 + xv2 (mod p).

With u1, u2, v1, v2 from the preceding lemma, let a = u1 − u2 and b = v1 − v2.

Lemma 3.34. a2 + b2 ≡ 0 (mod p) .

Lemma 3.35. 0 < a2 + b2 < 2p.

Theorem 3.31. p = a2 + b2.

Exercise 3.36. For any integers (or real numbers, for that matter),

(a2 + b2)(c2 + d2) = (ac− bd)2 + (ad+ bc)2.

Theorem 3.37. Let n be an integer greater than 1. Suppose n = 2α · pβ11 · · · p
βk
k · q

γ1
1 · · · q

γ`
` ,

where the pi are the prime factors that are congruent to 1 (mod 4) and the qj are the primes

congruent to 3 (mod 4). Then n may be written as the sum of two squares (of integers, of

course) if and only if all of the exponents γ1, . . . , γ` are even.

(Hint: Combine Theorems 3.30, 3.31, and 3.36.)

Theorem 3.38 (The Chinese Remainder Theorem). Let m1, . . . ,mr denote r integers

that are pairwise relatively prime, and let a1, . . . , ar be any integers. Then the set of r

simultaneous congruences:

x ≡ a1 (mod m1)
...

x ≡ ar (mod mr)

has a solution for x in the integers. Moreover, if x0 is one solution, then every solution is of

the form x = x0 + k(m1 · · ·mr) for some integer k.
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