Elementary Number Theory

Math 175, Section 30, Autumn 2010
Shmuel Weinberger (shmuel@math.uchicago.edu)
Tom Church (tchurch@math.uchicago.edu)
www.math.uchicago.edu/~tchurch/teaching/175/

Script 3: Congruence in the Integers

Definition 3.1. Fix $n \in \mathbb{Z}$ with $n>1$. We say that two integers a and b are congruent modulo n and write $a \equiv b(\bmod n)$ provided that $n \mid(b-a)$.

Theorem 3.2. Fix $n>1$. Then congruence modulo n is an equivalence relation on \mathbb{Z}. That is:
(i) If $a \in \mathbb{Z}$, then $a \equiv a(\bmod n)$.
(ii) If $a, b \in \mathbb{Z}$, then $a \equiv b(\bmod n)$ if and only if $b \equiv a(\bmod n)$.
(iii) If $a, b, c \in \mathbb{Z}$ and $a \equiv b(\bmod n)$ and $b \equiv c(\bmod n)$, then $a \equiv c(\bmod n)$.

Theorem 3.3. If $a \equiv b(\bmod n)$ and $c \equiv d(\bmod n)$, then
(i) $a+c \equiv b+d(\bmod n)$
(ii) $a \cdot c \equiv b \cdot d(\bmod n)$

Theorem 3.4. If $a \equiv b(\bmod n)$, then $a c \equiv b c(\bmod n c)$ for any $c>0$.

Theorem 3.5. If $(a, n)=1$, then there exists $b \in \mathbb{Z}$ such that $a \cdot b \equiv 1(\bmod n)$.

Theorem 3.6. Given $c \in \mathbb{Z}$, if $(a, n)=1$, then the congruence $a x \equiv c(\bmod n)$ has a solution for x in the integers.

Exercise 3.7. Solve the following congruences for x :
a) $3 x \equiv 1(\bmod 7)$
b) $8 x \equiv 11(\bmod 23)$
c) $25 x+1 \equiv 0(\bmod 126)$
d) $22 x \equiv 2(\bmod 178)$

Theorem 3.8. If a and n are relatively prime, then

$$
a x \equiv a y \quad(\bmod n) \quad \text { if and only if } x \equiv y(\bmod n) .
$$

Theorem 3.9. If $m=(a, n)$, then

$$
a x \equiv a y \quad(\bmod n) \quad \text { if and only if } x \equiv y \quad\left(\bmod \frac{n}{m}\right) .
$$

Definition 3.10. A number system (a collection of elements equipped with an addition operation and a multiplication operation) is called a commutative ring with identity (sometimes just called a ring if the context is clear) if it satisfies Axioms A1-A5, M1-M4, and D.

Definition 3.11. A number system is called a field if it satisfies Axioms A1-A5, M1-M4, and D (i.e. it is a ring), and in addition satisfies Axiom M5, which states that every nonzero element has a multiplicative inverse:

M5. (Multiplicative Inverses) For each nonzero element $a \neq 0$, there is a unique element a^{-1} such that $a \cdot a^{-1}=1$ and $a^{-1} \cdot a=1$.

Definition 3.12. Fix $n \in \mathbb{Z}$ with $n>1$. For an integer $a \in \mathbb{Z}$, the residue class of a modulo n, or sometimes just the residue class of a, is the set of all integers congruent to $a(\bmod n)$:

$$
[a]=\{b \in \mathbb{Z} \mid a \equiv b \quad(\bmod n)\}
$$

Exercise 3.13. Given $a, b \in \mathbb{Z}$, we have

$$
[a]=[b] \quad \text { if and only if } \quad a \equiv b \quad(\bmod n)
$$

Theorem 3.14. The number of distinct residue classes modulo n is n.
Theorem 3.15. If $[a]=[b]$, then $(a, n)=(b, n)$.

Definition 3.16. Fix $n>1$. We define the number system $\mathbb{Z} / n \mathbb{Z}$ to be the set of residue classes modulo n. We define addition and multiplication in $\mathbb{Z} / n \mathbb{Z}$ as follows:

$$
\begin{array}{ll}
{[a]+[b]=[a+b]} & \text { for } a, b \in \mathbb{Z} \\
{[a] \cdot[b]=[a \cdot b]} & \text { for } a, b \in \mathbb{Z}
\end{array}
$$

Theorem 3.17. Show that addition and multiplication are well-defined in $\mathbb{Z} / n \mathbb{Z}$.
Exercise 3.18. Check that $\mathbb{Z} / n \mathbb{Z}$ is a commutative ring with identity for any $n>1$.

Theorem 3.19. Show that $\mathbb{Z} / p \mathbb{Z}$ is a field if and only if p is prime.

Theorem 3.20. If p is prime and $a, b \in \mathbb{Z} / p \mathbb{Z}$, then $a \neq 0$ and $b \neq 0$ implies $a b \neq 0$.

Definition 3.21. If R is a commutative ring with identity, then an element $x \in R$ is called a unit if x has a multiplicative inverse in R. We write R^{\times}(pronounced "R-cross") for the set of invertible elements:

$$
R^{\times}=\{x \in R \mid x \cdot y=1 \text { for some } y \in R\}
$$

Theorem 3.22. For any ring R, the set R^{\times}is closed under multiplication.

Theorem 3.23 (Wilson's Theorem). If p is prime, then $(p-1)!\equiv-1(\bmod p)$.
(It may be helpful to consider $p=2$ as a separate case.)

Exercise 3.24. If p is prime and $a \in \mathbb{Z} / p \mathbb{Z}$ is nonzero, the sets

$$
\{x \mid x \in \mathbb{Z} / p \mathbb{Z}, x \neq 0\} \quad \text { and } \quad\{a x \mid x \in \mathbb{Z} / p \mathbb{Z}, x \neq 0\} \quad \text { are equal. }
$$

Theorem 3.25. If p is prime and $a \in \mathbb{Z}$ with $p \nmid a$, then $a^{p-1} \equiv 1(\bmod p)$.
Theorem 3.26 (Fermat's Little Theorem). If p is prime and $a \in \mathbb{Z}$, then $a^{p} \equiv a(\bmod p)$.

Theorem 3.27. Let p be prime. Then $x^{2} \equiv 1(\bmod p)$ if and only if $x \equiv \pm 1(\bmod p)$.
Theorem 3.28. Let p be an odd prime. Then the congruence $x^{2} \equiv-1(\bmod p)$ has solutions if and only if $p \equiv 1(\bmod 4)$.

Exercise 3.29. If q is prime and $q \equiv 3(\bmod 4)$, and $d \in \mathbb{Z} / q \mathbb{Z}$, then d and $-d$ cannot both be squares ${ }^{1}$ in $\mathbb{Z} / q \mathbb{Z}$.

Theorem 3.30. Let q be a prime factor of $a^{2}+b^{2}$. If $q \equiv 3(\bmod 4)$, then $q \mid a$ and $q \mid b$.

[^0]We state the next theorem before giving a sequence of lemmas that leads to its proof.

Theorem 3.31. If p is a prime such that $p \equiv 1(\bmod 4)$, there exist integers a, b such that

$$
p=a^{2}+b^{2}
$$

For Lemmas 3.32 through 3.35, assume the following:
Let p be prime such that $p \equiv 1(\bmod 4)$.
Let k be the greatest integer less than \sqrt{p}, and let $S=\{0,1, \ldots, k\}$.
Let x be an integer such that $x^{2} \equiv-1(\bmod p)($ as per Thm. 30).
Lemma 3.32. $|S \times S|>p$.
Lemma 3.33. There exist two distinct pairs $\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right) \in S \times S$ such that

$$
u_{1}+x v_{1} \equiv u_{2}+x v_{2} \quad(\bmod p)
$$

With $u_{1}, u_{2}, v_{1}, v_{2}$ from the preceding lemma, let $a=u_{1}-u_{2}$ and $b=v_{1}-v_{2}$.
Lemma 3.34. $a^{2}+b^{2} \equiv 0(\bmod p)$.
Lemma 3.35. $0<a^{2}+b^{2}<2 p$.
Theorem 3.31. $p=a^{2}+b^{2}$.

Exercise 3.36. For any integers (or real numbers, for that matter),

$$
\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)=(a c-b d)^{2}+(a d+b c)^{2}
$$

Theorem 3.37. Let n be an integer greater than 1. Suppose $n=2^{\alpha} \cdot p_{1}^{\beta_{1}} \cdots p_{k}^{\beta_{k}} \cdot q_{1}^{\gamma_{1}} \cdots q_{\ell}^{\gamma_{\ell}}$, where the p_{i} are the prime factors that are congruent to $1(\bmod 4)$ and the q_{j} are the primes congruent to $3(\bmod 4)$. Then n may be written as the sum of two squares (of integers, of course) if and only if all of the exponents $\gamma_{1}, \ldots, \gamma_{\ell}$ are even.
(Hint: Combine Theorems 3.30, 3.31, and 3.36.)

Theorem 3.38 (The Chinese Remainder Theorem). Let m_{1}, \ldots, m_{r} denote r integers that are pairwise relatively prime, and let a_{1}, \ldots, a_{r} be any integers. Then the set of r simultaneous congruences:

$$
\begin{aligned}
x & \equiv a_{1}\left(\bmod m_{1}\right) \\
& \vdots \\
x & \equiv a_{r}\left(\bmod m_{r}\right)
\end{aligned}
$$

has a solution for x in the integers. Moreover, if x_{0} is one solution, then every solution is of the form $x=x_{0}+k\left(m_{1} \cdots m_{r}\right)$ for some integer k.

[^0]: ${ }^{1}$ As you would expect, an element of a ring is called a square if it is equal to y^{2} for some element y.

