# Elementary Number Theory <br> Math 175, Section 30, Autumn 2010 <br> Shmuel Weinberger (shmuel@math.uchicago.edu) <br> Tom Church (tchurch@math.uchicago.edu) www.math.uchicago.edu/~tchurch/teaching/175/ 

## Script 2: Primes

Definition 2.1. Recall that if $g \in \mathbb{Z}$, an integer $a$ is called a divisor of $n$ if $a \mid n$. An integer $p>1$ is called a prime provided that the only positive divisors of $p$ are 1 and $p$ itself. An integer $n>1$ is called composite if it is not prime.

Theorem 2.2. Every integer $n>1$ has at least one prime factor.
Theorem 2.3. Every integer $n>1$ may be factored into a product of primes.

Theorem 2.4. Let $p$ be a prime number. If $p \mid a b$, then $p \mid a$ or $p \mid b$.
Theorem 2.5 (Fundamental Theorem of Arithmetic). Every integer $n>1$ may be factored into a product of primes in a unique way up to the order of the factors. In other words, there exists a uniquely determined set of primes $\left\{p_{1}, \ldots, p_{k}\right\}$ and a uniquely determined set of corresponding positive integers $\left\{\alpha_{1}, \ldots, \alpha_{k}\right\}$ such that $n=p_{1}^{\alpha_{1}} \cdots \cdots p_{k}^{\alpha_{k}}$.

Theorem 2.6. If $a^{2} \mid b^{2}$, then $a \mid b$.
Exercise 2.7. For any positive real number $x \in \mathbb{R}$, there is a real number $\sqrt{x}$ (you may assume this). It is defined uniquely by the property that $\sqrt{x}>0$ and $(\sqrt{x})^{2}=x$.

Recall that a real number $x$ is defined to be rational (and we write $x \in \mathbb{Q}$ ) if there exist integers $p$ and $q$ such that $q \cdot x=p$, and $x$ is called irrational otherwise.

Show that if $n$ is a positive integer that is not a perfect square (that is, there is no $a \in \mathbb{Z}$ such that $a^{2}=n$ ), then $\sqrt{n}$ is irrational.

Definition 2.8. A positive integer $m \in \mathbb{Z}$ is called a square if $m=d^{2}$ for some $d \in \mathbb{Z}$. A positive integer $n \in \mathbb{Z}$ is called squarefree if $n$ is not divisible by any square; formally, we say that $n$ is squarefree if $d^{2} \mid n \Longrightarrow d^{2}=1$.

Theorem 2.9. Prove that every positive integer $n$ can be written uniquely as $n=r s$, where $r>0$ is squarefree and $s>0$ is a square.

Theorem 2.10. Prove that the number of integers $m>0$ for which $m \leq N$ and $m$ is a square is at most $\sqrt{N}$. (Hint: prove that the number is exactly $\lfloor\sqrt{N}\rfloor$, the integer you get if you round $\sqrt{N}$ down to the nearest integer.)

Theorem 2.11. Let $\mathcal{S}=\left\{p_{1}, \ldots, p_{k}\right\}$ be a set of prime numbers. Prove that the number of squarefree integers $m>0$ for which all the prime factors of $m$ lie in the set $\mathcal{S}$ is $2^{k}$.

Theorem 2.12. Let $\mathcal{S}=\left\{p_{1}, \ldots, p_{k}\right\}$ be a set of prime numbers. Prove that the number of positive integers $m \leq N$ for which all prime factors of $m$ lie in the set $\mathcal{S}$ is at most $2^{k} \sqrt{N}$.

Theorem 2.13. Use the preceding theorems to prove that there are infinitely many primes.
Theorem 2.14. The prime-counting function $\pi(N)$ is defined to be the number of prime numbers less than or equal to $N$. Prove that $\pi(N) \geq \frac{1}{2} \log _{2}(N)$. (This is a stronger statement than Theorem 2.13-you should make sure you understand why.)

Challenge Problem 2.15. If you know another proof of Theorem 2.13: can you use your other proof to show that $\pi(N) \geq \frac{1}{2} \log _{2}(N)$ ? How about to show that $\pi(N) \geq \log _{2}\left(\log _{2}(N)\right)$ ? What is the best bound on $\pi(N)$ which you can get from this other proof?

