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Script 2: Primes

Definition 2.1. Recall that if g ∈ Z, an integer a is called a divisor of n if a|n. An integer

p > 1 is called a prime provided that the only positive divisors of p are 1 and p itself. An

integer n > 1 is called composite if it is not prime.

Theorem 2.2. Every integer n > 1 has at least one prime factor.

Theorem 2.3. Every integer n > 1 may be factored into a product of primes.

Theorem 2.4. Let p be a prime number. If p|ab, then p|a or p|b.

Theorem 2.5 (Fundamental Theorem of Arithmetic). Every integer n > 1 may be factored

into a product of primes in a unique way up to the order of the factors. In other words,

there exists a uniquely determined set of primes {p1, . . . , pk} and a uniquely determined set

of corresponding positive integers {α1, . . . , αk} such that n = pα1
1 · · · · · p

αk
k .

Theorem 2.6. If a2|b2, then a|b.

Exercise 2.7. For any positive real number x ∈ R, there is a real number
√
x (you may

assume this). It is defined uniquely by the property that
√
x > 0 and (

√
x)2 = x.

Recall that a real number x is defined to be rational (and we write x ∈ Q) if there exist

integers p and q such that q · x = p, and x is called irrational otherwise.

Show that if n is a positive integer that is not a perfect square (that is, there is no a ∈ Z

such that a2 = n), then
√
n is irrational.
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Definition 2.8. A positive integer m ∈ Z is called a square if m = d2 for some d ∈ Z. A

positive integer n ∈ Z is called squarefree if n is not divisible by any square; formally, we

say that n is squarefree if d2|n =⇒ d2 = 1.

Theorem 2.9. Prove that every positive integer n can be written uniquely as n = rs, where

r > 0 is squarefree and s > 0 is a square.

Theorem 2.10. Prove that the number of integers m > 0 for which m ≤ N and m is a

square is at most
√
N . (Hint: prove that the number is exactly b

√
Nc, the integer you get

if you round
√
N down to the nearest integer.)

Theorem 2.11. Let S = {p1, . . . , pk} be a set of prime numbers. Prove that the number

of squarefree integers m > 0 for which all the prime factors of m lie in the set S is 2k.

Theorem 2.12. Let S = {p1, . . . , pk} be a set of prime numbers. Prove that the number of

positive integers m ≤ N for which all prime factors of m lie in the set S is at most 2k
√
N .

Theorem 2.13. Use the preceding theorems to prove that there are infinitely many primes.

Theorem 2.14. The prime-counting function π(N) is defined to be the number of prime

numbers less than or equal to N . Prove that π(N) ≥ 1
2 log2(N). (This is a stronger

statement than Theorem 2.13—you should make sure you understand why.)

Challenge Problem 2.15. If you know another proof of Theorem 2.13: can you use your

other proof to show that π(N) ≥ 1
2 log2(N)? How about to show that π(N) ≥ log2(log2(N))?

What is the best bound on π(N) which you can get from this other proof?
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