Elementary Number Theory Math 175, Section 30, Autumn 2010 Shmuel Weinberger (shmuel@math.uchicago.edu) Tom Church (tchurch@math.uchicago.edu) www.math.uchicago.edu/~tchurch/teaching/175/

Script 1: Divisibility in the Integers

Definition 1.1. Let \mathbb{Z} be the *integers*, that is, the unique ordered commutative ring with identity whose positive elements satisfy the well-ordering property. In other words, the integers satisfy the following axioms:

E1. (Reflexivity, Symmetry, and Transitivity of Equality)

Reflexivity of EqualityIf $a \in \mathbb{Z}$, then a = a.Symmetry of EqualityIf $a, b \in \mathbb{Z}$ and a = b, then b = a.Transitivity of EqualityIf $a, b, c \in \mathbb{Z}$ and a = b and b = c, then a = c.

E2. (Additive Property of Equality)

If $a, b, c \in \mathbb{Z}$ and a = b, then a + c = b + c.

E3. (Multiplicative Property of Equality)

If $a, b, c \in \mathbb{Z}$ and a = b, then $a \cdot c = b \cdot c$.

A1. (Closure of Addition)

If $a, b \in \mathbb{Z}$, then $a + b \in \mathbb{Z}$.

A2. (Associativity of Addition)

If $a, b, c \in \mathbb{Z}$, then (a + b) + c = a + (b + c).

A3. (Commutativity of Addition)

If $a, b \in \mathbb{Z}$, then a + b = b + a.

A4. (Additive Identity)

There is an element $0 \in \mathbb{Z}$ such that a + 0 = a and 0 + a = a for every $a \in \mathbb{Z}$.

A5. (Additive Inverses)

For each element $a \in \mathbb{Z}$, there is a unique element $-a \in \mathbb{Z}$ such that a + (-a) = 0 and (-a) + a = 0.

M1. (Closure of Multiplication)

If $a, b \in \mathbb{Z}$, then $a \cdot b \in \mathbb{Z}$.

M2. (Associativity of Multiplication)

If $a, b, c \in \mathbb{Z}$, then $(a \cdot b) \cdot c = a \cdot (b \cdot c)$.

M3. (Commutativity of Multiplication)

If $a, b \in \mathbb{Z}$, then $a \cdot b = b \cdot a$.

M4. (Multiplicative Identity)

There is an element $1 \in \mathbb{Z}$ (with $1 \neq 0$) such that $a \cdot 1 = a$ and $1 \cdot a = a$ for every $a \in \mathbb{Z}$.

D. (Distributivity of Multiplication over Addition)

If $a, b, c \in \mathbb{Z}$, then $a \cdot (b + c) = a \cdot b + a \cdot c$ and $(a + b) \cdot c = a \cdot c + b \cdot c$.

O1. (Transitivity of Inequality)

If $a, b, c \in \mathbb{Z}$ and a < b and b < c, then a < c.

O2. (Trichotomy)

If $a, b \in \mathbb{Z}$, then exactly one of the following is true: a < b, a = b, or a > b.

O3. (Additive Property of Inequality)

If $a, b, c \in \mathbb{Z}$ and a < b, then a + c < b + c.

O4. (Multiplicative Property of Inequality)

If $a, b, c \in \mathbb{Z}$ and a < b and c > 0, then $a \cdot c < b \cdot c$.

W. (Well-Ordering Property)

If S is a non-empty set of positive integers, then S has a least element (that is, there is some $x \in S$ such that if $y \in S$, then $x \leq y$).

To prepare for class on Thursday, September 30: Theorem 1.2 through 1.15.

For Theorems 1.2 through 1.6, you may use Axioms E1–E3, A1–A5, M1–M4, and D.

Theorem 1.2 (Cancellation Law for Addition). If a + c = b + c, then a = b.

Theorem 1.3. If $a \in \mathbb{Z}$, then -(-a) = a.

Theorem 1.4. If $a \in \mathbb{Z}$, then $(-1) \cdot a = -a$.

Theorem 1.5. If $a \in \mathbb{Z}$, then $a \cdot 0 = 0$.

Theorem 1.6. If $a, b \in \mathbb{Z}$, then:

(i) a(-b) = -ab and (-a)b = -ab

(ii)
$$(-a)(-b) = ab$$

Challenge Problem 1.7. Prove Theorem 1.2 without assuming that additive inverses are unique (i.e. delete the word "unique" from Axiom A5). Then use Theorem 1.2 to prove that -a is in fact unique anyway.

For Theorems 1.8 through 1.12, you may also use Axioms O1–O4.

Theorem 1.8. If a > 0, then -a < 0. (And if a < 0, then -a > 0.)

Theorem 1.9. If a < b and c < 0, then ac > bc.

Theorem 1.10. If $a \neq 0$, then $a^2 > 0$.

Exercise 1.11. Prove that 1 > 0.

Theorem 1.12. If $a \ge 1$ and b > 0, then $ab \ge b$.

For Theorem 1.13, you may also use Axiom W.

Theorem 1.13. There is no integer between 0 and 1.

Challenge Problem 1.14. Prove that Axiom W is necessary to prove Theorem 1.13.

Theorem 1.15 (Cancellation for Multiplication). If $a \neq 0$ and $a \cdot b = a \cdot c$, then b = c.

Definition 1.16. Let $a, b \in \mathbb{Z}$. We say that b divides a (and that b is a divisor of a) and write b|a provided that there is some $n \in \mathbb{Z}$ such that $a = b \cdot n$.

Definition 1.17 (Division). If b|a (with $b \neq 0$) and c is the integer such that $a = b \cdot c$, then we define $\frac{a}{b} = c$.

Exercise 1.18. Show that $\frac{a}{b}$ is well-defined.

Theorem 1.19. If a|b and a|c, then a|(b+c) and a|(b-c).

Theorem 1.20. If a|b and $c \in \mathbb{Z}$, then $a|(b \cdot c)$.

Theorem 1.21. If a|b and b|c, then a|c.

Exercise 1.22. Prove that if a|b and a|c and $s, t \in \mathbb{Z}$, then a|(sb + tc).

Theorem 1.23. If a > 0, b > 0 and a|b, then $a \le b$.

Exercise 1.24. Show that any non-zero integer has a finite number of divisors.

Theorem 1.25. If a|b and b|a, then $a = \pm b$.

Theorem 1.26. If $m \neq 0$, then a|b if and only if ma|mb.

Theorem 1.27. (The Division Algorithm) If $a, b \in \mathbb{Z}$ and b > 0, then there exist unique integers q and r such that a = bq + r and $0 \le r < b$.

Definition 1.28. Let $a, b \in \mathbb{Z}$, not both zero. A common divisor of a and b is defined to be any integer c such that c|a and c|b. The greatest common divisor of a and b is denoted (a, b) and represents the largest element of the set $\{c \in \mathbb{Z} \mid c|a, c|b\}$.

Exercise 1.29. Show that (a, b) = (b, a) = (a, -b).

Theorem 1.30. If d|a and d|b, then d|(a, b). (Hint: Do Theorem 1.31 first.)

Theorem 1.31. If d = (a, b), then there exist integers x, y such that d = xa + yb.

Theorem 1.32. If $m \in \mathbb{Z}$ and m > 0, then (ma, mb) = m(a, b).

Theorem 1.33. If d|a and d|b and d > 0, then $(\frac{a}{d}, \frac{b}{d}) = \frac{(a,b)}{d}$.

Definition 1.34. Two integers a and b are said to be *relatively prime* if (a, b) = 1.

Theorem 1.35. If (a, m) = 1 and (b, m) = 1, then (ab, m) = 1.

Theorem 1.36. If c|ab and (c, b) = 1, then c|a.

Theorem 1.37. (The Euclidean Algorithm)

Let $a, b \in \mathbb{Z}$ be positive integers. If we apply the Division Algorithm sequentially as follows:

$$a = bq_1 + r_1 \qquad 0 < r_1 < b$$

$$b = r_1q_2 + r_2 \qquad 0 < r_2 < r_1$$

$$r_1 = r_2q_3 + r_3 \qquad 0 < r_3 < r_2$$

$$\vdots$$

$$r_{k-2} = r_{k-1}q_k + r_k \qquad 0 < r_k < r_{k-1}$$

$$r_{k-1} = r_kq_{k+1}$$

then $r_k = (a, b)$.

Some definitions that will come in handy:

Definition 1.38 (Subtraction). We define the *difference* a - b to be the sum a + (-b).

Definition 1.39 (Absolute value). If $a \in \mathbb{Z}$, we define the *absolute value* of a by the following notation and with the following meaning:

$$|a| = \begin{cases} a & \text{if } a \ge 0\\ -a & \text{if } a < 0 \end{cases}$$