Elementary Number Theory
Math 175, Section 30, Autumn 2010
Shmuel Weinberger (shmuel@math.uchicago.edu)
Tom Church (tchurch@math.uchicago.edu) www.math.uchicago.edu/~tchurch/teaching/175/

Script 1: Divisibility in the Integers

Definition 1.1. Let \mathbb{Z} be the integers, that is, the unique ordered commutative ring with identity whose positive elements satisfy the well-ordering property. In other words, the integers satisfy the following axioms:

E1. (Reflexivity, Symmetry, and Transitivity of Equality)
Reflexivity of Equality If $a \in \mathbb{Z}$, then $a=a$.
Symmetry of Equality If $a, b \in \mathbb{Z}$ and $a=b$, then $b=a$.
Transitivity of Equality If $a, b, c \in \mathbb{Z}$ and $a=b$ and $b=c$, then $a=c$.
E2. (Additive Property of Equality)
If $a, b, c \in \mathbb{Z}$ and $a=b$, then $a+c=b+c$.
E3. (Multiplicative Property of Equality)
If $a, b, c \in \mathbb{Z}$ and $a=b$, then $a \cdot c=b \cdot c$.

A1. (Closure of Addition)

If $a, b \in \mathbb{Z}$, then $a+b \in \mathbb{Z}$.
A2. (Associativity of Addition)
If $a, b, c \in \mathbb{Z}$, then $(a+b)+c=a+(b+c)$.

A3. (Commutativity of Addition)

If $a, b \in \mathbb{Z}$, then $a+b=b+a$.

A4. (Additive Identity)

There is an element $0 \in \mathbb{Z}$ such that $a+0=a$ and $0+a=a$ for every $a \in \mathbb{Z}$.

A5. (Additive Inverses)

For each element $a \in \mathbb{Z}$, there is a unique element $-a \in \mathbb{Z}$ such that $a+(-a)=0$ and $(-a)+a=0$.

M1. (Closure of Multiplication)
If $a, b \in \mathbb{Z}$, then $a \cdot b \in \mathbb{Z}$.
M2. (Associativity of Multiplication)
If $a, b, c \in \mathbb{Z}$, then $(a \cdot b) \cdot c=a \cdot(b \cdot c)$.
M3. (Commutativity of Multiplication)
If $a, b \in \mathbb{Z}$, then $a \cdot b=b \cdot a$.
M4. (Multiplicative Identity)
There is an element $1 \in \mathbb{Z}$ (with $1 \neq 0$) such that $a \cdot 1=a$ and $1 \cdot a=a$ for every $a \in \mathbb{Z}$.
D. (Distributivity of Multiplication over Addition)

If $a, b, c \in \mathbb{Z}$, then $a \cdot(b+c)=a \cdot b+a \cdot c$ and $(a+b) \cdot c=a \cdot c+b \cdot c$.
O1. (Transitivity of Inequality)
If $a, b, c \in \mathbb{Z}$ and $a<b$ and $b<c$, then $a<c$.

O2. (Trichotomy)

If $a, b \in \mathbb{Z}$, then exactly one of the following is true: $a<b, a=b$, or $a>b$.

O3. (Additive Property of Inequality)

If $a, b, c \in \mathbb{Z}$ and $a<b$, then $a+c<b+c$.

O4. (Multiplicative Property of Inequality)

If $a, b, c \in \mathbb{Z}$ and $a<b$ and $c>0$, then $a \cdot c<b \cdot c$.

W. (Well-Ordering Property)

If S is a non-empty set of positive integers, then S has a least element (that is, there is some $x \in S$ such that if $y \in S$, then $x \leq y$).

To prepare for class on Thursday, September 30: Theorem 1.2 through 1.15. For Theorems 1.2 through 1.6, you may use Axioms E1-E3, A1-A5, M1-M4, and D.

Theorem 1.2 (Cancellation Law for Addition). If $a+c=b+c$, then $a=b$.
Theorem 1.3. If $a \in \mathbb{Z}$, then $-(-a)=a$.
Theorem 1.4. If $a \in \mathbb{Z}$, then $(-1) \cdot a=-a$.
Theorem 1.5. If $a \in \mathbb{Z}$, then $a \cdot 0=0$.

Theorem 1.6. If $a, b \in \mathbb{Z}$, then:
(i) $a(-b)=-a b$ and $(-a) b=-a b$
(ii) $(-a)(-b)=a b$

Challenge Problem 1.7. Prove Theorem 1.2 without assuming that additive inverses are unique (i.e. delete the word "unique" from Axiom A5). Then use Theorem 1.2 to prove that $-a$ is in fact unique anyway.

For Theorems 1.8 through 1.12, you may also use Axioms O1-O4.
Theorem 1.8. If $a>0$, then $-a<0$. (And if $a<0$, then $-a>0$.)
Theorem 1.9. If $a<b$ and $c<0$, then $a c>b c$.

Theorem 1.10. If $a \neq 0$, then $a^{2}>0$.

Exercise 1.11. Prove that $1>0$.
Theorem 1.12. If $a \geq 1$ and $b>0$, then $a b \geq b$.

For Theorem 1.13, you may also use Axiom W.

Theorem 1.13. There is no integer between 0 and 1.

Challenge Problem 1.14. Prove that Axiom W is necessary to prove Theorem 1.13.

Theorem 1.15 (Cancellation for Multiplication). If $a \neq 0$ and $a \cdot b=a \cdot c$, then $b=c$.

Definition 1.16. Let $a, b \in \mathbb{Z}$. We say that b divides a (and that b is a divisor of a) and write $b \mid a$ provided that there is some $n \in \mathbb{Z}$ such that $a=b \cdot n$.

Definition 1.17 (Division). If $b \mid a$ (with $b \neq 0$) and c is the integer such that $a=b \cdot c$, then we define $\frac{a}{b}=c$.

Exercise 1.18. Show that $\frac{a}{b}$ is well-defined.
Theorem 1.19. If $a \mid b$ and $a \mid c$, then $a \mid(b+c)$ and $a \mid(b-c)$.
Theorem 1.20. If $a \mid b$ and $c \in \mathbb{Z}$, then $a \mid(b \cdot c)$.

Theorem 1.21. If $a \mid b$ and $b \mid c$, then $a \mid c$.
Exercise 1.22. Prove that if $a \mid b$ and $a \mid c$ and $s, t \in \mathbb{Z}$, then $a \mid(s b+t c)$.

Theorem 1.23. If $a>0, b>0$ and $a \mid b$, then $a \leq b$.

Exercise 1.24. Show that any non-zero integer has a finite number of divisors.
Theorem 1.25. If $a \mid b$ and $b \mid a$, then $a= \pm b$.
Theorem 1.26. If $m \neq 0$, then $a \mid b$ if and only if $m a \mid m b$.

Theorem 1.27. (The Division Algorithm) If $a, b \in \mathbb{Z}$ and $b>0$, then there exist unique integers q and r such that $a=b q+r$ and $0 \leq r<b$.

Definition 1.28. Let $a, b \in \mathbb{Z}$, not both zero. A common divisor of a and b is defined to be any integer c such that $c \mid a$ and $c \mid b$. The greatest common divisor of a and b is denoted (a, b) and represents the largest element of the set $\{c \in \mathbb{Z}|c| a, c \mid b\}$.

Exercise 1.29. Show that $(a, b)=(b, a)=(a,-b)$.

Theorem 1.30. If $d \mid a$ and $d \mid b$, then $d \mid(a, b)$. (Hint: Do Theorem 1.31 first.)

Theorem 1.31. If $d=(a, b)$, then there exist integers x, y such that $d=x a+y b$.
Theorem 1.32. If $m \in \mathbb{Z}$ and $m>0$, then $(m a, m b)=m(a, b)$.
Theorem 1.33. If $d \mid a$ and $d \mid b$ and $d>0$, then $\left(\frac{a}{d}, \frac{b}{d}\right)=\frac{(a, b)}{d}$.

Definition 1.34. Two integers a and b are said to be relatively prime if $(a, b)=1$.

Theorem 1.35. If $(a, m)=1$ and $(b, m)=1$, then $(a b, m)=1$.

Theorem 1.36. If $c \mid a b$ and $(c, b)=1$, then $c \mid a$.

Theorem 1.37. (The Euclidean Algorithm)
Let $a, b \in \mathbb{Z}$ be positive integers. If we apply the Division Algorithm sequentially as follows:

$$
\begin{aligned}
a & =b q_{1}+r_{1} & & 0<r_{1}<b \\
b & =r_{1} q_{2}+r_{2} & & 0<r_{2}<r_{1} \\
r_{1} & =r_{2} q_{3}+r_{3} & & 0<r_{3}<r_{2} \\
& \vdots & & \\
r_{k-2} & =r_{k-1} q_{k}+r_{k} & & 0<r_{k}<r_{k-1} \\
r_{k-1} & =r_{k} q_{k+1} & &
\end{aligned}
$$

then $r_{k}=(a, b)$.

Some definitions that will come in handy:

Definition 1.38 (Subtraction). We define the difference $a-b$ to be the sum $a+(-b)$.

Definition 1.39 (Absolute value). If $a \in \mathbb{Z}$, we define the absolute value of a by the following notation and with the following meaning:

$$
|a|=\left\{\begin{aligned}
a & \text { if } a \geq 0 \\
-a & \text { if } a<0
\end{aligned}\right.
$$

