Elementary Number Theory

Math 175, Section 30, Autumn 2010
Shmuel Weinberger (shmuel@math.uchicago.edu)
Tom Church (tchurch@math.uchicago.edu)
www.math.uchicago.edu/~tchurch/teaching/175/

Homework 6

Due Thursday, November 18 in class.

Question 1. The primes less than 100 are:
$2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89$, and 97.
Those that are congruent to $1(\bmod 4)$ are $\mathbf{5}, \mathbf{1 3}, \mathbf{1 7}, \mathbf{2 9}, \mathbf{3 7}, \mathbf{4 1}, \mathbf{5 3}, \mathbf{6 1}, \mathbf{7 3}, \mathbf{8 9}$, and $\mathbf{9 7}$. Write each of these primes as a sum of two squares. For example, $13=9+4=3^{2}+2^{2}$. (The squares less than 100 are $1,2,4,9,16,25,36,49,64$, and 81.)

We proved in Theorem 3.31 that any prime p such that $p \equiv 1(\bmod 4)$ can be written as $p=a^{2}+b^{2}$ for some a and b. In the rest of this homework you will use Gaussian integers to give a quicker and simpler proof of this theorem. You will also prove that p can be uniquely expressed as the sum of two squares, which we did not prove in class.

Question 2. Prove that if p is a prime with $p \equiv 1(\bmod 4)$, the $\operatorname{ring} \mathbb{Z}[i] /(p)$ is not a field. (Hint: find more than two roots in $\mathbb{Z}[i] /(p)$ of the polynomial $P(x)=x^{2}+1$.)

Question 3. Prove that if p is a prime in \mathbb{Z} and there is no element $x \in \mathbb{Z}[i]$ with norm $N(x)=p$, then p is irreducible in $\mathbb{Z}[i]$.

Question 4. Using Questions 2 and 3 , prove that if p is a prime with $p \equiv 1(\bmod 4)$, then p can be written as $p=a^{2}+b^{2}$ for some $a, b \in \mathbb{Z}$.

Question 5. Prove that p can be uniquely written as $p=a^{2}+b^{2}$: if we can also write $p=c^{2}+d^{2}$, then either $a= \pm c$ and $b= \pm d$, or vice versa.

Question 6. Let p and q be primes with $p \equiv 1(\bmod 4)$ and $q \equiv 1(\bmod 4)$. How many distinct ways are there of writing $p q=a^{2}+b^{2}$? (Assume $a>b>0$ to avoid double-counting.)

