Elementary Number Theory

Math 175, Section 30, Autumn 2010
Shmuel Weinberger (shmuel@math.uchicago.edu)
Tom Church (tchurch@math.uchicago.edu)
www.math.uchicago.edu/~tchurch/teaching/175/

Homework 5

Due Tuesday, November 9 in class.
Recall that given $x, y \in \mathbb{Z}[i]$, we say that $y \mid x$ if there exists $z \in \mathbb{Z}[i]$ such that $x=y z$.
Definition HW5.1. Fix a nonzero element $x \in \mathbb{Z}[i]$. We say that two elements y and z are congruent modulo x and write $y \equiv z(\bmod x)$ if and only if $x \mid(y-z)$.

Congruence modulo x is an equivalence relation. ${ }^{1}$
Definition HW5.2. For $y \in \mathbb{Z}[i]$, the residue class of y modulo x is the set of all elements $z \in \mathbb{Z}[i]$ which are congruent to y modulo x :

$$
[y]=\{z \in \mathbb{Z}[i] \mid y \equiv z \quad(\bmod x)\}
$$

Question 1. Prove that for any nonzero $x \in \mathbb{Z}[i]$, there are only finitely many different residue classes modulo x.

Question 2. If $x=a+b i$, how many residue classes are there modulo x ?

Definition HW5.3. Fix a nonzero element $x \in \mathbb{Z}[i]$. We define the number system $\mathbb{Z}[i] /(x)$ to be the set of residue classes modulo x. We define addition and multiplication in $\mathbb{Z}[i] /(x)$ as follows:

$$
\begin{array}{ll}
{[y]+[z]=[y+z]} & \text { for } y, z \in \mathbb{Z} \\
{[y] \cdot[z]=[y \cdot z]} & \text { for } y, z \in \mathbb{Z}
\end{array}
$$

These operations are well-defined and make $\mathbb{Z}[i] /(x)$ into a commutative ring with identity; the additive identity is [0], and the multiplicative identity is $[1] .{ }^{1}$

[^0](Thus Question 1 asked you to prove that the ring $\mathbb{Z}[i] /(x)$ is finite, and Question 2 asked you to find its cardinality $|\mathbb{Z}[i] /(x)|$.)

Question 3. The following questions should be answered by concrete computations. For example, if one of these rings is not a field, you should give an explicit example of an nonzero element and a justification of why it does not have a multiplicative inverse.
a) For $x=2$, is $\mathbb{Z}[i] /(x)$ a field?
b) For $y=3$, is $\mathbb{Z}[i] /(y)$ a field?
c) For $z=5$, is $\mathbb{Z}[i] /(z)$ a field?

In any commutative ring with identity, there are two related kinds of elements: irreducibles and primes. For \mathbb{Z} and $\mathbb{Z}[i]$ these notions coincide and the terms can be (and are) used interchangably, but it is good to be familiar with the right general terminology.

Definition HW5.4. Let R be a commutative ring with identity.
An element $x \in R$ is called prime if

$$
x \mid a b \quad \text { implies that either } \quad x \mid a \text { or } x \mid b .
$$

An element $x \in R$ is called irreducible if

$$
d \mid x \quad \text { implies that either } \quad d \mid 1 \text { or } x \mid d .
$$

Question 4. We proved in Question HW3.1(c) that irreducible elements of $\mathbb{Z}[i]$ are prime. Prove the converse: if $x \in \mathbb{Z}[i]$ is prime, then x is irreducible.

Question 5. Given $x \in \mathbb{Z}[i]$, prove that $\mathbb{Z}[i] /(x)$ is a field if and only if x is a prime in $\mathbb{Z}[i]$.

Question 6. Prove that 2 is irreducible in $\mathbb{Z}[\sqrt{-5}]$, but 2 is not a prime in $\mathbb{Z}[\sqrt{-5}]$. (So in general, the notions of "irreducible" and "prime" can be different.)

[^0]: ${ }^{1}$ You may assume this without proving it.

