Elementary Number Theory

Math 175, Section 30, Autumn 2010
Shmuel Weinberger (shmuel@math.uchicago.edu)
Tom Church (tchurch@math.uchicago.edu) www.math.uchicago.edu/~tchurch/teaching/175/

Homework 4

Due Tuesday, November 2 in class. ${ }^{1}$

Question 1. Let $P(x)$ be a polynomial with integer coefficients of the form

$$
P(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0},
$$

with $a_{i} \in \mathbb{Z}$ for each i.
a) Prove that if $r \in \mathbb{Q}$ is a root of $P(x)$ - meaning that $P(r)=0$ - then:
i) r is an integer, and
ii) $r \mid a_{0}$.
b) If the degree n is odd, the constant term a_{0} is odd, and $P(x)$ has an odd number of odd coefficients,
i.e. the size of the set $\left\{1 \leq i \leq n-1 \mid a_{i}\right.$ is odd $\}$ is odd
then $P(x)$ has at least one irrational real root.
(Some examples of polynomials satisfying this condition are $x^{3}-2 x^{2}+9 x+1$ and $x^{5}-11 x^{4}+7$.)

[^0]
[^0]: ${ }^{1}$ Election day!

