Elementary Number Theory Math 175, Section 30, Autumn 2010 Shmuel Weinberger (shmuel@math.uchicago.edu) Tom Church (tchurch@math.uchicago.edu) www.math.uchicago.edu/~tchurch/teaching/175/

Homework 4

Due Tuesday, November 2 in class.¹

Question 1. Let P(x) be a polynomial with integer coefficients of the form

$$P(x) = x^{n} + a_{n-1}x^{n-1} + \dots + a_{2}x^{2} + a_{1}x + a_{0},$$

with $a_i \in \mathbb{Z}$ for each *i*.

- a) Prove that if $r \in \mathbb{Q}$ is a root of P(x)—meaning that P(r) = 0—then:
 - i) r is an integer, and
 - ii) $r|a_0$.
- b) If the degree n is odd, the constant term a_0 is odd, and P(x) has an odd number of odd coefficients,

i.e. the size of the set $\{1 \le i \le n-1 \mid a_i \text{ is odd}\}$ is odd

then P(x) has at least one irrational real root.

(Some examples of polynomials satisfying this condition are $x^3 - 2x^2 + 9x + 1$ and $x^5 - 11x^4 + 7$.)

¹Election day!