Recall that $\mathbb{Z}[i]$ is the number system consisting of formal expressions of the form $a + bi$ where $a \in \mathbb{Z}$ and $b \in \mathbb{Z}$.

Definition HW.3.1. Given $x, y \in \mathbb{Z}[i]$ and $d \in \mathbb{Z}[i]$, we say that d is a GCD of x and y if:

- $d | x$ and $d | y$, and $[d$ is a common divisor$]$
- if $e | x$ and $e | y$, then $e | d$. $[every$ common divisor divides $d]$

The reason we say “a GCD” is that if d is a GCD of x and y, then so are $-d$, id, and $-id$.

[compare with Theorem 1.30]

Question 1.

a) Let a, b be nonzero elements of $\mathbb{Z}[i]$. If we apply the Division Algorithm sequentially:

\[
\begin{align*}
 a &= bq_1 + r_1 & 0 < N(r_1) < N(b) \\
 b &= r_1q_2 + r_2 & 0 < N(r_2) < N(r_1) \\
 r_1 &= r_2q_3 + r_3 & 0 < N(r_3) < N(r_2) \\
 \vdots & & \vdots \\
 r_{k-2} &= r_{k-1}q_k + r_k & 0 < N(r_k) < N(r_{k-1}) \\
 r_{k-1} &= r_kq_{k+1} \\
\end{align*}
\]

then r_k is a GCD of a and b.

[compare with Theorem 1.37]

b) Prove that if d is a GCD of x and y, then we can write $d = ax + by$ for some $a, b \in \mathbb{Z}[i]$.

[compare with Theorem 1.31]
Definition HW.3.2. Given $x, y \in \mathbb{Z}[i]$, we say that x and y are relatively prime if 1 is a GCD of x and y. [compare with Definition 1.34]

Recall that x is associated to y if $x|y$ and $y|x$ (you proved this means $x = \pm y$ or $\pm iy$).

Definition HW.3.3. A nonzero element $x \in \mathbb{Z}[i]$ is called irreducible if every divisor of x is associated to 1 or associated to x. [compare with Definition 2.1]

Definition HW.3.4. A nonzero element $x \in \mathbb{Z}[i]$ is called a unit if it is associated to 1.

c) Let x be an irreducible element of $\mathbb{Z}[i]$. Prove that if $x|ab$, then $x|a$ or $x|b$. (Hint: show that if $x \not| a$, then x and a are relatively prime.) [compare with Theorem 2.4]

d) Prove that every nonzero element of $\mathbb{Z}[i]$ which is not a unit has at least one irreducible factor. [compare with Theorem 2.2]

e) Prove that every nonzero element $a \in \mathbb{Z}[i]$ can be factored into a product of irreducible elements times a unit: $a = u \cdot x_1 \cdots x_k$, where u is a unit and each x_i is irreducible. [compare with Theorem 2.3]

f) **Unique factorization in $\mathbb{Z}[i]$.** Prove that every nonzero element $a \in \mathbb{Z}[i]$ can be factored into a product of irreducibles in a unique way, up to units and the order of the factors.

In other words, if $a = u \cdot x_1 \cdots x_k$ and $a = v \cdot y_1 \cdots y_\ell$ are two factorizations of a as in part e), then $k = \ell$ and there is a reordering of the factors so that x_i is associated to y_i for all $i = 1, 2, \ldots, k$. [compare with Theorem 2.5]
Question 2. We define the number system \(\mathbb{Z}[\sqrt{-5}] \) to be the collection of formal expressions of the form \(a + b\sqrt{-5} \), where \(a \in \mathbb{Z} \) and \(b \in \mathbb{Z} \). For example, \(2 + 0\sqrt{-5}, 3 + 2\sqrt{-5}, \) and \(-2 + 7\sqrt{-5} \) are all elements of \(\mathbb{Z}[\sqrt{-5}] \).

If \(x \in \mathbb{Z}[\sqrt{-5}] \) and \(y \in \mathbb{Z}[\sqrt{-5}] \) are two elements of \(\mathbb{Z}[\sqrt{-5}] \), we define addition and multiplication as follows:

\[
\text{if } x = a + b\sqrt{-5} \text{ and } y = c + d\sqrt{-5} \text{, then } x + y = (a + c) + (b + d)\sqrt{-5}
\]

\[
\text{if } x = a + b\sqrt{-5} \text{ and } y = c + d\sqrt{-5} \text{, then } x \cdot y = (ac - 5bd) + (ad + bc)\sqrt{-5}
\]

These operations are commutative, associative, and distribute (they satisfy all the axioms up through Axiom D). The additive identity is \(0 = 0 + 0\sqrt{-5} \), and the multiplicative identity is \(1 = 1 + 0\sqrt{-5} \).

a) Come up with a definition of a function \(N: \mathbb{Z}[\sqrt{-5}] \to \mathbb{Z} \) with the following properties.

I. \(N(0) = 0 \)

II. \(N(1) = 1 \) and \(N(-1) = 1 \)

III. \(N(x) \neq 1 \) for some nonzero \(x \) (just to rule out silly answers)

IV. \(N(x \cdot y) = N(x) \cdot N(y) \) for any \(x, y \in \mathbb{Z}[\sqrt{-5}] \) (this is the important condition)

b) One way to factor \(6 = 6 + 0\sqrt{-5} \) into irreducibles is

\[
6 = 2 \cdot 3.
\]

Find a different way to factor 6 as a product of irreducibles,\(^1\) showing that we do not have unique factorization in \(\mathbb{Z}[\sqrt{-5}] \).

\(^1\)Writing it as \(6 = (-2)(-3) \) does not count as “different”.

3