Elementary Number Theory
 Math 175, Section 30, Autumn 2010
 Shmuel Weinberger (shmuel@math.uchicago.edu)
 Tom Church (tchurch@math.uchicago.edu) www.math.uchicago.edu/~tchurch/teaching/175/

Homework 2

Due Tuesday, October 19 in class.

In Homework 1 we defined the number system $\mathbb{Z}[i]$, consisting of formal expressions of the form $a+b i$ where $a \in \mathbb{Z}$ and $b \in \mathbb{Z}$, and defined addition and multiplication.

Let $x, y \in \mathbb{Z}[i]$. Just as we did in Script 1, we say that y divides x (and that y is a divisor of x, and write $y \mid x)$ if there is some $z \in \mathbb{Z}[i]$ such that $x=y \cdot z$.

Question 1. Prove that any nonzero element of $\mathbb{Z}[i]$ has finitely many divisors in $\mathbb{Z}[i]$.

Question 2. Let $x, y \in \mathbb{Z}[i]$. If $x \mid y$ and $y \mid x$, we say that y is an associate of x. Prove that if y is an associate of x, then y is either equal to $x,-x, i x$, or $-i x$.

Question 3 (The Division Algorithm for $\mathbb{Z}[i])$. If $x, y \in \mathbb{Z}[i]$ and $y \neq 0$, then there exist $q \in \mathbb{Z}[i]$ and $r \in \mathbb{Z}[i]$ so that

$$
x=y q+r \quad \text { and } \quad N(r)<N(y)
$$

Question 4. Note that we did not require q and r to be unique in Question 3. Give an example of elements $x \in \mathbb{Z}[i]$ and $y \in \mathbb{Z}[i]$ for which there is more than one possible choice of q and r. Can you find an example where there are more than two possible choices of q and r ?

