Elementary Number Theory Math 175, Section 30, Autumn 2010 Shmuel Weinberger (shmuel@math.uchicago.edu) Tom Church (tchurch@math.uchicago.edu) www.math.uchicago.edu/~tchurch/teaching/175/

Homework 1

Due Tuesday, October 12 in class.

Question 1. The set $\mathbb{Z}[i]$ is the collection of formal expressions of the form a + bi, where $a \in \mathbb{Z}$ and $b \in \mathbb{Z}$. In this context, the plus sign and the symbol *i* are inert symbols with no meaning. For example, 2 + 0i, 3 + 2i, and -2 + 7i are all elements of $\mathbb{Z}[i]$.

If $x \in \mathbb{Z}[i]$ and $y \in \mathbb{Z}[i]$ are two elements of $\mathbb{Z}[i]$, we define the operation of addition as follows:

if x = a + bi and y = c + di, then x + y = (a + c) + (b + d)i

For example:

$$(2+0i) + (3+2i) = 5+2i$$

$$(3+2i) + (-2+7i) = 1+9i$$

$$(2+0i) + (-2+7i) = 0+7i$$

- a) Prove that the addition operation on $\mathbb{Z}[i]$ is associative (that is, that $\mathbb{Z}[i]$ satisfies Axiom A2).
- b) What is the additive identity in $\mathbb{Z}[i]$? Prove that the element you found satisfies Axiom A4: for any $x \in \mathbb{Z}[i]$, we have x + 0 = x and 0 + x = x.
- c) What is the additive inverse of 3 + 4i? In general, if x = a + bi, what is the additive inverse of x? Prove that your answer satisfies Axiom A5: x + (-x) = 0.

For $x \in \mathbb{Z}[i]$ and $y \in \mathbb{Z}[i]$, we define the operation of multiplication as follows:

if
$$x = a + bi$$
 and $y = c + di$, then $x \cdot y = (ac - bd) + (bc + ad)i$

For example:

$$(3+2i) \cdot (1+4i) = (3-8) + (2+12)i = -5+14i$$

$$(2+0i) \cdot (3+2i) = (6-0) + (0+4)i = 6+4i$$

$$(1-2i) \cdot (-2+5i) = (-2+10) + (4+5)i = 8+9i$$

- d) Prove that the multiplication operation on $\mathbb{Z}[i]$ is associative (that is, $\mathbb{Z}[i]$ satisfies Axiom M2).
- e) What is the multiplicative identity in $\mathbb{Z}[i]$? Prove that the element you found satisfies Axiom M4: for any $x \in \mathbb{Z}[i]$, we have $x \cdot 1 = x$ and $1 \cdot x = x$.
- g) Prove that multiplication distributes over addition: if x = a + bi, y = c + di, and z = e + fi are elements of $\mathbb{Z}[i]$, prove that

$$x \cdot (y+z) = x \cdot y + x \cdot z$$

Question 2. The set $\mathbb{Q}[i]$ is the collection of formal expressions of the form a + bi, where $a \in \mathbb{Q}$ and $b \in \mathbb{Q}$. (Recall that \mathbb{Q} is the set of rational numbers.) For example, $\frac{1}{2} + 0i$, 3 + 2i, and $-2 + \frac{7}{3}i$ are all elements of $\mathbb{Z}[i]$. We define addition and multiplication on $\mathbb{Q}[i]$ by the same formulas as before: if x = a + bi and y = c + di, then

$$x + y = (a + c) + (b + d)i$$

$$x \cdot y = (ac - bd) + (bc + ad)i$$

- a) First, you should check that your proofs for Question 1(a−g) apply to Q[i] as well. You do not need to write anything for this part.
- b) What is the multiplicative inverse of 3 + 4i?
- c) Which elements of $\mathbb{Q}[i]$ have a multiplicative inverse? Prove your answer is correct. (You may want to return to this after Question 3.)

Question 3. If a + bi is an element of $\mathbb{Z}[i]$, its norm $N(a + bi) \in \mathbb{Z}$ is defined to be:

$$N(a+bi) = a^2 + b^2$$

If a + bi is an element of $\mathbb{Q}[i]$, we define its norm $N(a + bi) \in \mathbb{Q}$ by the same formula: $N(a + bi) = a^2 + b^2$.

- a) Find all elements $x \in \mathbb{Z}[i]$ with N(x) = 1.
- b) Find all elements $x \in \mathbb{Z}[i]$ with N(x) = 2.
- c) Prove that for any $x\in \mathbb{Z}[i]$ and $y\in \mathbb{Z}[i]$ we have

$$N(x \cdot y) = N(x) \cdot N(y).$$

(You should check that your proof also works for $\mathbb{Q}[i]$; you do not need to write the proof again.)