Elementary Number Theory
 Math 175, Section 30, Autumn 2010
 Shmuel Weinberger (shmuel@math.uchicago.edu)
 Tom Church (tchurch@math.uchicago.edu) www.math.uchicago.edu/~tchurch/teaching/175/

Homework 1

Due Tuesday, October 12 in class.

Question 1. The set $\mathbb{Z}[i]$ is the collection of formal expressions of the form $a+b i$, where $a \in \mathbb{Z}$ and $b \in \mathbb{Z}$. In this context, the plus sign and the symbol i are inert symbols with no meaning. For example, $2+0 i, 3+2 i$, and $-2+7 i$ are all elements of $\mathbb{Z}[i]$.

If $x \in \mathbb{Z}[i]$ and $y \in \mathbb{Z}[i]$ are two elements of $\mathbb{Z}[i]$, we define the operation of addition as follows:

$$
\text { if } x=a+b i \quad \text { and } \quad y=c+d i, \quad \text { then } \quad x+y=(a+c)+(b+d) i
$$

For example:

$$
\begin{aligned}
& (2+0 i)+(3+2 i)=5+2 i \\
& (3+2 i)+(-2+7 i)=1+9 i \\
& (2+0 i)+(-2+7 i)=0+7 i
\end{aligned}
$$

a) Prove that the addition operation on $\mathbb{Z}[i]$ is associative (that is, that $\mathbb{Z}[i]$ satisfies Axiom A2).
b) What is the additive identity in $\mathbb{Z}[i]$? Prove that the element you found satisfies Axiom A4: for any $x \in \mathbb{Z}[i]$, we have $x+0=x$ and $0+x=x$.
c) What is the additive inverse of $3+4 i$? In general, if $x=a+b i$, what is the additive inverse of x ? Prove that your answer satisfies Axiom A5: $x+(-x)=0$.

For $x \in \mathbb{Z}[i]$ and $y \in \mathbb{Z}[i]$, we define the operation of multiplication as follows:

$$
\text { if } x=a+b i \text { and } y=c+d i, \text { then } x \cdot y=(a c-b d)+(b c+a d) i
$$

For example:

$$
\begin{array}{rlrl}
(3+2 i) \cdot(1+4 i) & =(3-8) & +(2+12) i & =-5+14 i \\
(2+0 i) \cdot(3+2 i) & =(6-0) & +(0+4) i & =6+4 i \\
(1-2 i) \cdot(-2+5 i) & =(-2+10)+(4+5) i & =8+9 i
\end{array}
$$

d) Prove that the multiplication operation on $\mathbb{Z}[i]$ is associative (that is, $\mathbb{Z}[i]$ satisfies Axiom M2).
e) What is the multiplicative identity in $\mathbb{Z}[i]$? Prove that the element you found satisfies Axiom M4: for any $x \in \mathbb{Z}[i]$, we have $x \cdot 1=x$ and $1 \cdot x=x$.
g) Prove that multiplication distributes over addition: if $x=a+b i, y=c+d i$, and $z=e+f i$ are elements of $\mathbb{Z}[i]$, prove that

$$
x \cdot(y+z)=x \cdot y+x \cdot z
$$

Question 2. The set $\mathbb{Q}[i]$ is the collection of formal expressions of the form $a+b i$, where $a \in \mathbb{Q}$ and $b \in \mathbb{Q}$. (Recall that \mathbb{Q} is the set of rational numbers.) For example, $\frac{1}{2}+0 i$, $3+2 i$, and $-2+\frac{7}{3} i$ are all elements of $\mathbb{Z}[i]$. We define addition and multiplication on $\mathbb{Q}[i]$ by the same formulas as before: if $x=a+b i$ and $y=c+d i$, then

$$
x+y=(a+c)+(b+d) i \quad x \cdot y=(a c-b d)+(b c+a d) i
$$

a) First, you should check that your proofs for Question $1(\mathrm{a}-\mathrm{g})$ apply to $\mathbb{Q}[i]$ as well. You do not need to write anything for this part.
b) What is the multiplicative inverse of $3+4 i$?
c) Which elements of $\mathbb{Q}[i]$ have a multiplicative inverse? Prove your answer is correct. (You may want to return to this after Question 3.)

Question 3. If $a+b i$ is an element of $\mathbb{Z}[i]$, its norm $N(a+b i) \in \mathbb{Z}$ is defined to be:

$$
N(a+b i)=a^{2}+b^{2}
$$

If $a+b i$ is an element of $\mathbb{Q}[i]$, we define its norm $N(a+b i) \in \mathbb{Q}$ by the same formula: $N(a+b i)=a^{2}+b^{2}$.
a) Find all elements $x \in \mathbb{Z}[i]$ with $N(x)=1$.
b) Find all elements $x \in \mathbb{Z}[i]$ with $N(x)=2$.
c) Prove that for any $x \in \mathbb{Z}[i]$ and $y \in \mathbb{Z}[i]$ we have

$$
N(x \cdot y)=N(x) \cdot N(y) .
$$

(You should check that your proof also works for $\mathbb{Q}[i]$; you do not need to write the proof again.)

