## Math 153-37, Mr. Church, Homework 13

Due at the beginning of class on Friday, February 27.
Please staple your homework.

On the midterm, you were unable to apply the integral test to the series $\sum_{k=1}^{\infty} \frac{1}{k!}$ because we didn't know any continuous function $f(x)$ on the real numbers so that $f(k)=\frac{1}{k!}$. The problem is that we only know how to define the factorial function for natural numbres. For example, what should be the value of $\left(\frac{1}{2}\right)$ !, or $\sqrt{3}$ !, or $\pi!$, and so on? In the following problems, we answer these questions.

1. Show that the improper integral $\int_{0}^{\infty} e^{-t} d t=1$.
2. By using integration by parts three times, show that $\int_{0}^{\infty} t^{3} e^{-t} d t=6$. You may find useful the following form of integration by parts for improper integrals:

$$
\int_{0}^{\infty} u d v=[u v]_{0}^{\infty}-\int_{0}^{\infty} v d u
$$

where by $[u v]_{0}^{\infty}$ we mean $\lim _{b \rightarrow \infty}(u(b) v(b)-u(0) v(0))$.
Since $0!=1$ and $3!=3 \cdot 2 \cdot 1=6$, this suggests that $\int_{0}^{\infty} t^{n} e^{-t} d t=n!$ for any natural number $n$, and indeed this is true. Now we make a leap, and make the following definition:

$$
\Pi(x)=\int_{0}^{\infty} t^{x} e^{-t} d t
$$

at least for those $x$ where this improper integral converges. We have already observed that $\Pi(0)=1$, that $\Pi(3)=6$, and that in general $\Pi(n)=n!$ when $n$ is a natural number.

We want to show that this definition works for other values of $x$, but we need to know that the improper integral in the definition converges. First we consider the question of convergence when $0<x<1$.
3. In this question, we assume that $0<x<1$.
(a) Show that when $1 \leq t$ we have $t^{x} e^{-t}<t e^{-t}$, and use this to show that $\int_{1}^{\infty} t^{x} e^{-t} d t$ converges.
(b) Conclude that $\int_{0}^{\infty} t^{x} e^{-t} d t$ converges. [Note that $\int_{0}^{1} t^{x} e^{-t} d t$ is a definite integral (that is, not an improper integral) and thus it automatically converges.]

Now we have shown that the definition $\Pi(x)$ converges when $0 \leq x \leq 1$; how can we use this to show the same thing for other $x$ ? Answer: the same way that we related $\Pi(3)$ to $\Pi(0)$.
4. (a) Use integration by parts to show that

$$
\int_{0}^{\infty} t^{\sqrt{2}} e^{-t} d t=\sqrt{2} \int_{0}^{\infty} t^{\sqrt{2}-1} e^{-t} d t
$$

[Hint: set $u=t^{\sqrt{2}}, d v=e^{-t} d t$.]
(b) In part (a) you showed that $\Pi(\sqrt{2})=\sqrt{2} \cdot \Pi(\sqrt{2}-1)$. Using the same method, show in general that $\Pi(x)=x \cdot \Pi(x-1)$ for any $x \neq 0$. Note that when $x$ appears in an integral with respect to $t$, you can regard $x$ as a constant.

By using the equation $\Pi(x)=x \cdot \Pi(x-1)$, we find that $\Pi(x)$ is defined for all real numbers except the negative integers. Here we will end the homework, finishing with some truly surprising facts about this function.

The whole point of defining $\Pi(x)$ was so we could extend the factorial function to real numbers other than whole numbers. So for the rest of this sheet, let us use the notation $x$ ! to mean $\Pi(x)$.

- In the introduction we asked what $\left(\frac{1}{2}\right)$ ! should be. It is possible to show directly from the definition that $\left(\frac{1}{2}\right)!=\frac{\sqrt{\pi}}{2}$.
- For any non-integer $x$, we can multiply $x$ ! by $(-x)$ !. There is no reason to expect that we would get anything nice, but in fact Euler showed that

$$
x!\cdot(-x)!=\frac{\pi x}{\sin (\pi x)}
$$

- Another equivalent definition of $\Pi(x)$ due to Euler is given by

$$
x!=\lim _{n \rightarrow \infty} \frac{n!(n+1)^{x+1}}{(x+1)(x+2) \cdots(x+n+1)} .
$$

(Each of these results is crazy, and I want to put exclamation points after each one of them, except that it would make things very confusing.)

