Math 152-37, Mr. Church, Homework 5

Due in class on Friday, October 17. Please staple your homework.

You are responsible for all of these problems (including odd-numbered exercises). Starred problems are harder and worth more points.

1. Read "A Summary for Finding All the Extreme Values of a Continuous Function f " at the top of page 179 .
2. Find the minimum of $x^{3}+y^{3}$ over all x and y such that $x+y=16$. (Note that these numbers x and y are allowed to be negative.)
3. Let $f(x)=A x^{2}+B x+C$. In terms of A, B, and C describe where $f(x)$ is concave up and where it is concave down.
4. Let $g(x)=x+\frac{1}{x}$. Describe where $g(x)$ is concave up and where it is concave down.
5. (\star) Find the point on the parabola $y=x^{2}$ which is closest to the point $p=(3,0)$. (Remember that the distance between two points $p=\left(x_{1}, y_{1}\right)$ and $q=\left(x_{2}, y_{2}\right)$ is given by the Pythagorean formula $\operatorname{dist}(p, q)=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}$.
6. (\star) Exercise 4.1.29.
