Math 152-37, Mr. Church, Homework 11 Due in class on Friday, November 14. Please staple your homework.

The second question requires material from Wednesday's lecture, but you can start on the others now.

1. A *u*-substitution with $u = 1 + t^2$ shows that

$$\int_{-1}^{1} t\sqrt{1+t^2} \, dt = 0$$

Explain why $\int_{-1}^{1} \sqrt{t^2 + t^4} dt$ is *not* equal to 0, and calculate this integral.

2. (Corrected) Consider the parametric curve in the plane $P(t) = (t^2, t^3)$ defined for $t \in [0,3]$. Compute the arc length of this curve.

Question 3 is on the next page.

- 3. (**) This question is a brief preview of improper integrals (usually not taught until Math 153). It seeks to answer the question: what is $\int_0^9 \frac{1}{\sqrt{x}} dx$? Since $\frac{1}{\sqrt{x}}$ is not defined at x = 0, we need to go beyond what we have done in class.
 - (a) Calculate $\int_{1}^{9} \frac{1}{\sqrt{t}} dt$.
 - (b) Define a function g(x) for x > 0 by

$$g(x) = \int_x^9 \frac{1}{\sqrt{t}} \, dt$$

Give a formula for g(x) in terms of x (that is, evaluate the integral).

(c) Does $\lim_{x\to 0^+} g(x)$ exist? If not, show that it does not exist; if it does, compute the limit.

This is how an integral like $\int_0^9 \frac{1}{\sqrt{x}} dx$ is defined: as $\lim_{x \to 0^+} \int_x^9 \frac{1}{\sqrt{t}} dt$.

- (d) Calculate $\int_{1}^{9} \frac{1}{t^2} dt$.
- (e) Define a function h(x) for x > 0 by

$$h(x) = \int_x^9 \frac{1}{t^2} dt.$$

Give a formula for h(x) in terms of x.

- (f) Does $\lim_{x\to 0^+} h(x)$ exist? If not, show that it does not exist; if it does, compute the limit. (This is how $\int_0^9 \frac{1}{x^2} dx$ is defined.)
- (g) Note that $-g(x) = \int_9^x \frac{1}{\sqrt{t}} dt$. Show that for any real number N, there is some x > 0 such that $-g(x) \ge N$.

This implies that $\lim_{x\to\infty} \int_9^x \frac{1}{\sqrt{t}} dx$ does not exist; this limit is how we would define $\int_9^\infty \frac{1}{\sqrt{x}} dx$. (We have not defined $\lim_{x\to\infty} f(x)$, so you'll have to take my word about the relation between (g) and this limit.)