Math 152-37, Mr. Church, Homework 11

Due in class on Friday, November 14.
Please staple your homework.

The second question requires material from Wednesday's lecture, but you can start on the others now.

1. A u-substitution with $u=1+t^{2}$ shows that

$$
\int_{-1}^{1} t \sqrt{1+t^{2}} d t=0
$$

Explain why $\int_{-1}^{1} \sqrt{t^{2}+t^{4}} d t$ is not equal to 0 , and calculate this integral.
2. (Corrected) Consider the parametric curve in the plane $P(t)=\left(t^{2}, t^{3}\right)$ defined for $t \in[0,3]$. Compute the arc length of this curve.

Question 3 is on the next page.
3. (**) This question is a brief preview of improper integrals (usually not taught until Math 153). It seeks to answer the question: what is $\int_{0}^{9} \frac{1}{\sqrt{x}} d x$? Since $\frac{1}{\sqrt{x}}$ is not defined at $x=0$, we need to go beyond what we have done in class.
(a) Calculate $\int_{1}^{9} \frac{1}{\sqrt{t}} d t$.
(b) Define a function $g(x)$ for $x>0$ by

$$
g(x)=\int_{x}^{9} \frac{1}{\sqrt{t}} d t
$$

Give a formula for $g(x)$ in terms of x (that is, evaluate the integral).
(c) Does $\lim _{x \rightarrow 0^{+}} g(x)$ exist? If not, show that it does not exist; if it does, compute the limit.

This is how an integral like $\int_{0}^{9} \frac{1}{\sqrt{x}} d x$ is defined: as $\lim _{x \rightarrow 0^{+}} \int_{x}^{9} \frac{1}{\sqrt{t}} d t$.
(d) Calculate $\int_{1}^{9} \frac{1}{t^{2}} d t$.
(e) Define a function $h(x)$ for $x>0$ by

$$
h(x)=\int_{x}^{9} \frac{1}{t^{2}} d t
$$

Give a formula for $h(x)$ in terms of x.
(f) Does $\lim _{x \rightarrow 0^{+}} h(x)$ exist? If not, show that it does not exist; if it does, compute the limit. (This is how $\int_{0}^{9} \frac{1}{x^{2}} d x$ is defined.)
(g) Note that $-g(x)=\int_{9}^{x} \frac{1}{\sqrt{t}} d t$. Show that for any real number N, there is some $x>0$ such that $-g(x) \geq N$.

This implies that $\lim _{x \rightarrow \infty} \int_{9}^{x} \frac{1}{\sqrt{t}} d x$ does not exist; this limit is how we would define $\int_{9}^{\infty} \frac{1}{\sqrt{x}} d x$. (We have not defined $\lim _{x \rightarrow \infty} f(x)$, so you'll have to take my word about the relation between (g) and this limit.)

