Math 120 HW 9 Solutions

June 8, 2018

Question 1

Write down a ring homomorphism (no proof required) f from R = Z[\/11] = {a + by/11|a,b € Z}
to S =7Z/35Z.

The main difficulty is to find an element x € Z/35Z which satisfies 22 = 11 (mod 35). One way to solve
for such an element systematically is to work separately modulo 5 and 7. The solutions to #2 = 11 (mod 5)
are ¥ = +1, and the solutions to #2 = 11 (mod 7) are x = £2. Putting these possibilities together using the
Chinese Remainder Theorem, the four solutions to 22 = 11 (mod 35) are # = 9,16, 19,26 (mod 35).

Picking any of these, say z = 9, we get a ring homomorphism f : R — S given by f(a + bv/11) = a + 9b
by sending V11 to 9.

Question 2

Let R C R[z] be the subring of R[z] consisting of polynomials whose coefficient of z is 0:

R={f(z) =ao+ax® + - + a,z"|a; € R}.

You proved in HW8 Q1 that R is not a PID. Is R a UFD? Prove or disprove.
No, R is not a UFD. For example, 25 = 222222 = 23 - 23, and neither 22 nor 2*® can be factored further

(by degree considerations) in R. Thus 2°® has two different factorizations into irreducibles in R.

Question 3

Given a polynomial p(z) € R[z] and an element a € R, we say that a is a root of p(x) if p(a) =0 € R.
Prove that if R is a domain and p(z) has degree n, then p(x) has at most n roots in R.
We start with a “zero theorem” for polynomials over a general commutative ring.

Lemma 1. If R is a commutative ring, p(x) € R[x], and a € R is a root of p(x), then p(x) = (x — a)q(x)
for some q € R[z].

Proof. Induct on the degree of p(x). If degp = 0, then p(x) is a nonzero constant function, so it can’t have
roots.
Suppose the lemma is true for all polynomials of degree at most n — 1, and let degp = n. If the leading
term of p is a,x™, then
p(z) = apz™ Yz — a) + r(z)
for some r(x) of strictly smaller degree. By induction, r(x) is a multiple of (x — a), so p(z) is as well. [
Now, suppose for the sake of contradiction that R is a domain and p(z) has degree n but n + 1 roots
aiy...,an4+1. Then, by the lemma, p(z) = (z — a1)p1(z) for some pi(x) € R[x] of degree n — 1. Since
p(a;) = 0 for all ¢,
plai) = (a; — a1)pi(a;) = 0



for all i. But R is a domain and has no zero divisors, so since (a; — a;) # 0, we conclude that pi(a;) =0
for all i = 2,...,n+ 1. Applying the lemma to p; next, we find p(z) = (x — a1)(z — a2)p2(x), where ps has
all the roots as, ..., an4+1. Continuing in this manner, we find that p(z) = (x —a1) - - (& — any1)pPnt1(x) for
some polynomial p,1(x) € R[z]. But such a product has degree at least n + 1, which is a contradiction.
Thus p(x) had at most n roots to begin with.

Question 4

Let p(z) € C[z] be a nonzero polynomial. Consider the following two properties of p(x):

(A) The quotient ring C[z]/(p(z)) is isomorphic to a product ring C x --- x C.

(B) The polynomial p(z) has no repeated roots.

Prove that these two properties are equivalent: (4) < (B).

Write C™ for the n-fold product ring C x --- x C.

Suppose first that p(z) has no repeated roots. By the fundamental theorem of algebra, p(x) factors
as p(z) = u(r —ay)---(x — o) where u # 0 and a; € C are all distinct. Then, consider the map
¢ : Clx]/(p(x)) — C™, given by evaluating at each of the roots of p:

o(f) = (f(ar), flaz),.... flan)).

Then, ¢(f) = (0,...,0) if and only if f(a;) = 0 for all . This happens if and only if f € (p(x)), so indeed
ker ¢ = (p(x)) and ¢ is well-defined. Note that ¢ is just the product of n different evaluation maps, which
we have shown (e.g. HW7 Q3) are individually ring homomorphisms. Thus ¢ is a ring homomorphism. It
remains to show that ¢ is an isomorphism. By the argument before, ker ¢ = (p(x)) exactly so ¢ is injective.

To prove surjectivity, pick any (z1,...,2,) € C". There exists by Lagrange interpolation a polynomial
q(z) € Clz] for which ¢(«;) = z;. Explicitly,

(7 — ay)

& I
alw) = ; inj#(az‘ — ;)

For this polynomial ¢, ¢(q) = (z1,...,2,). Thus ¢ is bijective and therefore an isomorphism of rings, as
desired.

Conversely, suppose the quotient ring C[z]/(p(z)) is isomorphic to some product C™.

Define a nilpotent element of a ring R to be an element r € R for which some power vanishes: r™ = 0 for
some m € N. We claim that C" has no nonzero nilpotents. Indeed, if (z1,...,2,) € C™, then multiplication
is coordinatewise, so (z1,...,2,)™ = 0 iff all of the z; are zero.

Thus, Clz]/(p(z)), being isomorphic to C™, must also have no nonzero nilpotents. Write by the funda-
mental theorem of algebra

p(@) = u(x —o1)™ (z —ag)™ - (x — an)™
where now the «; are the distinct roots of p but the multiplicities m; are not necessarily 1. In fact, if p(z) has
repeated roots, then some m; # 1, and so the function ¢(z) = (z — a1)(x — ag) - - - (x — @) is not a multiple
of p, so ¢ # 0 in Clz]/(p(x)). But ¢(z)™ is a multiple of p, where M = max(my,...,m,), so ¢(z)™ =0 in
Clx]/(p(x)), and therefore ¢ would be a nonzero nilpotent in C[x]/(p(x)). Since C[z]/(p(x)) has no nonzero
nilpotents, it follows that all the m; = 1 and p(x) has no repeated roots, as desired.

Question 5

Let R =Z/5°Z (just like the ring Z/10°Z from HW6, but in base 5 instead).

(a) Prove that R =Z/5°Z is a domain.

One way of explicitly describing the elements r € R is to identify them with infinite sequences (1,73, .. .)
where r; € Z/5'Z and r; = r;_; (mod 5)*~1, where addition and multiplication is coordinatewise. Suppose
r,s € R are identified with sequences (r1,r2,...) and (s1, s2,...), and r, s # 0. We want to show that rs # 0.

But if rs = 0, then r;s; = 0 (mod 5)¢ for all i. In particular, for each i, one of r; or s; is divisible by
5Li/2] Since r; = 7(is2) (mod 5) li/2) and s; = 5[i/2) (mod 5) li/2] it follows that for all i, either Tlij2) =0
(mod 5)l"/2lor s|;/5) =0 (mod 5)L/2.



In particular, one of (71,79, ...) and (s1, $2, . . .) has infinitely many terms equal to zero (in the appropriate
ring Z/5'Z). But then every term before each zero must also be zero. Thus, one of 7, s is zero, and there are
no nontrivial zero divisors in R, as desired.

(b) Describe which elements of R = Z/5°°Z are units.

The answer is all elements for which 7 # 0 (mod 5). Concretely, in base 5 this includes all “infinite
base-5 integers” which do not end in zero. To prove this rigorously, one must construct an s for each such r
for which s = 1 - in other words, to give a sequence (1, Sa,...) for which r;s; = (mod 5) for all . This
turns out to be a special case of an important result known as Hensel’s Lifting Lemma.

(c) Let K be the fraction field of domain R = Z/5°Z. Give a concrete description of K.
What are its elements? What are the operations of addition/multiplication on these elements?
Can one easily see from your description that every nonzero element is invertible, or is that
difficult to see? Sketch a proof that your description is correct.

One way of defining K is as the set of fractions 5™u where n € Z and u € R is a unit, together with 0.
By part (b), every element r € R can be written as 5™u for some n > 0 and some unit « by dividing r by
the highest power of 5 dividing r.

Addition and multiplication work in the obvious ways. If 5"« and 5™v are two elements for which m <n
(without loss of generality), 5™u + 5™"v = 5™ (u + 5™ ™v), where the latter addition is addition in R. It is
possible for powers of 5 to appear in the sum u + 5"~™wv if n = m; in this case, factor out the largest power
of 5 dividing v + v and combine it with 5™. Multiplication is just

(5™u)(5"v) = 5™ (uw).
Every nonzero element 5"« has an inverse 5~ "u~! since u is a unit in R.
The point is that the only elements not invertible already in R are multiples of 5, and so “inverting 5” is
all that’s necessary to obtain the fraction field.

Question 6

Suppose that R is a commutative ring which contains Z.

(a) Prove that if P C R is a prime ideal of R, then PNZ is a prime ideal of Z.

Certainly, P NZ is an ideal of Z, since P itself must be closed under multiplication by Z C R. Suppose
for the sake of contradiction that P is prime but P NZ is not prime in Z. Then, since the ideals of Z are
just nZ and are prime iff n is prime, this implies that P N Z = nZ for a composite n. Pick any nontrivial
factorization n = ab of z. Since a,b € Z C R as well, it follows that ab € P but a,b & P,so P is not a prime
ideal. This is the contradiction we were looking for.

(b) Part (a) defines a function 3 : {prime ideals of R} — {prime ideals of Z}. Construct an
explicit commutative ring R containing 7Z such that the image of [ is

i.e. all prime ideals except (2) and (3). Prove (or at least sketch a proof) R has this property.

One such ring is R = Z[] = {3%=.a € Z,m,n € N}. This ring certainly contains Z. Also, note that
(p) C R is still a prime ideal for every p € Z prime which is not 2 and 3, and (0) C R is as well since R is a
domain. For these, it is easy to check that S(pR) = pZ and S(0R) = 0Z.

Thus, img 2 {(0), (5), (7), (11),(13),...}. It remains to show that (2) and (3) are not in this image.

If (2) € imf, there is some prime P C R for which P NZ = 2Z. But then P > 2, and % lies in R, so
P> % -2 =1. Thus P must be the entire ring, contradicting the fact that PNZ = 2Z. Similarly, PNZ # 3Z
for any P C R.

Question 7
(a) Let F be a field, and let R C F be a subring with the property that for every = € F, either

z € Ror L e R (or both).
Prove that if I and J are two ideals of R, then either I C J or J C I.



Suppose for the sake of contradiction that there exist two ideals I, J neither of which contains the other.
Then, there are elements « € I\J and y € J\I. Since all ideals contain 0, we have z,y # 0. Thus, z/y € F,
and the property given tells us that either x/y or its inverse y/z lies in R. Without loss of generality,
x/y € R. Then, since J is an ideal of R, z = (z/y) -y € J, contradicting the assumption = ¢ J. Thus one
of I, J contains the other.

(b) Construct a proper subring R C Q such that for every z € Q, either € R or é € R (or
both).

Let a

i.e. the ring of all fractions with odd denominator. Sums and products of such fractions also have odd
denominator, so R is a subring of QQ, and it is proper because % ¢ R.

For any x € Q, x can be written as a/b, where a,b are coprime. Thus, at least one of a and b is odd, so
at least one of a/b and its inverse b/a lies in R, as desired.

Question 8

Given an abelian group A, we say the 10-dual AV is the abelian group of homomorphisms
f:A—Z/10Z under pointwise addition.

We call an abelian group 10-invisible if AV = 0, i.e. if there are no nonzero group homo-
morphisms f: A — Z/10Z.

(a*) Compute A for A=7,A=7/6Z, and A =17/10Z.

As abelian groups, the answers are ZY ~ Z/10Z, (Z/6Z)" ~ Z/2Z, and (Z/10Z)" ~ Z/10Z. These can
be computed using the fact that a homomorphism between cyclic groups is determined by the image of a
generator.

(b) We know from class (or will soon) that every finitely-generated abelian group A is
isomorphic to

AZL" QL/ML DL/ L D - S L[y 7

for a unique r > 0 and a unique sequence of positive integers nq|na|- - - |ng.

In terms of this description, which finitely-generated abelian groups are 10-invisible?

If there is a nonzero homomorphism f : G; — Z/10Z from any single factor in a direct sum €@ G; of
abelian groups to Z/10Z, then there is a nonzero homomorphism from the whole sum to Z/10Z, given by
first projecting an element (aq,...,a,) € @ G; onto the i-th coordinate a; and then applying f.

Thus it suffices to check which cyclic groups Z or Z/nZ are 10-invisible. The answer is exactly the groups
Z/nZ for which (n,10) = 1, which we show now.

First, if (n,10) = 1, then any homomorphism f : Z/nZ — Z/10Z must send 1 to an element with order
dividing n. But no nonzero element of the range has order dividing n, so f = 0.

Conversely, if 2|n, there exists a nonzero homomorphism f : Z/nZ — 7Z/10Z given by sending 1 to 5.
Similarly, if 5|n, one can simply send 1 to 2.

As a result, the finitely-generated 10-invisible abelian groups are exactly those finite abelian groups of
the form

Z/mZ SLInZ D - ®ZL/niZ

where nq|ns| - - |ng, and (ng, 10) = 1.

(c) Choose two of the following abelian groups A, and for each, describe as best you can
the abelian group AV:

(i) A=0Q,

We show QY = 0. If not, some f : Q — Z/10Z is nonzero, and sends a/b + n for 10 { n and a/b € Q.
But then it must send a/10b to an element m € Z/10Z for which 10m = 7, which is absurd.

(i) A=17Z[3],

We show (Z[$])V ~ Z/5Z. In fact, the five homomorphisms are f;,0 < i < 4, where f;(a/6F) = 2ai
(mod 10). Tt is easy to check that these maps are homomorphisms - note that 6m = m (mod 10) for any
even m. Conversely, to show that these are the only homomorphisms can be reduced to checking that if
f(1) =0 then f = 0.



Suppose there is a nonzero group homomorphism f for which f(1) = 0. Then, 6* f(1/6*) =0, so f(1/6%)
is an element divisible by 5 in Z/10Z, i.e. f(1/6%) € {0,5}. But if f(1/6¥) = 5, then 6f(1/6**!) = 5
(mod 10), which is absurd since 5 is odd. Thus, f(1/6%) = 0 for all k. It now follows that f(a/6*) = 0 for
all a, k, as desired.

(iii) A = Q/Z,

Any group homomorphism Q/Z — Z/10Z can be precomposed with the quotient map Q — Q/Z to give
a homomorphism Q — Z/10Z. By (i) there are no such nonzero maps, so (Q/Z)" = 0 as well.

(iv) A=17Z/10>Z.

We claim that (Z/10°Z)Y ~ Z/10Z, and the ten maps are given by f;(r) = ir (mod 10) for each of
1=20,...,9. These are certainly homomorphisms; it remains to check that they are all possible ones.

Note that f(10r) = 10f(r) = 0 (mod 10), so every multiple of 10 is sent to zero in Z/10Z. Also, every
r € Z/10°°Z can be written as ro + 10r; where ro € {0,...,9} is the ones digit and r; € Z/10°Z. Thus, for
f to be a group homomorphism,

f(r) = fro+10r1) = rof(1) + 10f(r1) = ro f(1).

Thus, f is uniquely determined by f(1), and we're done.



