Math 120 HW 9 Solutions

June 8, 2018

Question 1
Write down a ring homomorphism (no proof required) \(f \) from \(R = \mathbb{Z}[\sqrt{11}] = \{a + b\sqrt{11}|a, b \in \mathbb{Z}\} \) to \(S = \mathbb{Z}/35\mathbb{Z} \).

The main difficulty is to find an element \(x \in \mathbb{Z}/35\mathbb{Z} \) which satisfies \(x^2 \equiv 11 \pmod{35} \). One way to solve for such an element systematically is to work separately modulo 5 and 7. The solutions to \(x^2 \equiv 11 \pmod{5} \) are \(x \equiv \pm1 \), and the solutions to \(x^2 \equiv 11 \pmod{7} \) are \(x \equiv \pm2 \). Putting these possibilities together using the Chinese Remainder Theorem, the four solutions to \(x^2 \equiv 11 \pmod{35} \) are \(x \equiv 9, 16, 19, 26 \pmod{35} \).

Picking any of these, say \(x = 9 \), we get a ring homomorphism \(f : R \to S \) given by \(f(a + b\sqrt{11}) = a + 9b \) by sending \(\sqrt{11} \) to 9.

Question 2
Let \(R \subset \mathbb{R}[x] \) be the subring of \(\mathbb{R}[x] \) consisting of polynomials whose coefficient of \(x \) is 0:

\[
R = \{f(x) = a_0 + a_2x^2 + \cdots + a_nx^n|a_i \in \mathbb{R}\}.
\]

You proved in HW8 Q1 that \(R \) is not a PID. Is \(R \) a UFD? Prove or disprove.

No, \(R \) is not a UFD. For example, \(x^6 = x^2 \cdot x^2 \cdot x^2 = x^3 \cdot x^3 \), and neither \(x^2 \) nor \(x^3 \) can be factored further (by degree considerations) in \(R \). Thus \(x^6 \) has two different factorizations into irreducibles in \(R \).

Question 3
Given a polynomial \(p(x) \in R[x] \) and an element \(a \in R \), we say that \(a \) is a root of \(p(x) \) if \(p(a) = 0 \in R \).

Prove that if \(R \) is a domain and \(p(x) \) has degree \(n \), then \(p(x) \) has at most \(n \) roots in \(R \).

We start with a “zero theorem” for polynomials over a general commutative ring.

Lemma 1. If \(R \) is a commutative ring, \(p(x) \in R[x] \), and \(a \in R \) is a root of \(p(x) \), then \(p(x) = (x - a)q(x) \) for some \(q \in R[x] \).

Proof. Induct on the degree of \(p(x) \). If \(\deg p = 0 \), then \(p(x) \) is a nonzero constant function, so it can’t have roots.

Suppose the lemma is true for all polynomials of degree at most \(n - 1 \), and let \(\deg p = n \). If the leading term of \(p \) is \(a_nx^n \), then

\[
p(x) = a_nx^{n-1}(x - a) + r(x)
\]

for some \(r(x) \) of strictly smaller degree. By induction, \(r(x) \) is a multiple of \((x - a) \), so \(p(x) \) is as well. \(\square \)

Now, suppose for the sake of contradiction that \(R \) is a domain and \(p(x) \) has degree \(n \) but \(n + 1 \) roots \(a_1, \ldots, a_{n+1} \). Then, by the lemma, \(p(x) = (x - a_1)p_1(x) \) for some \(p_1(x) \in R[x] \) of degree \(n - 1 \). Since \(p(a_i) = 0 \) for all \(i \),

\[
p(a_i) = (a_i - a_1)p_1(a_i) = 0
\]
for all \(i\). But \(R\) is a domain and has no zero divisors, so since \((a_i - a_1) \neq 0\), we conclude that \(p_1(a_i) = 0\) for all \(i = 2, \ldots, n + 1\). Applying the lemma to \(p_1\) next, we find \(p(x) = (x - a_1)(x - a_2)p_2(x)\), where \(p_2\) has all the roots \(a_3, \ldots, a_{n+1}\). Continuing in this manner, we find that \(p(x) = (x - a_1) \cdots (x - a_{n+1})p_{n+1}(x)\) for some polynomial \(p_{n+1}(x) \in \mathbb{R}[x]\). But such a product has degree at least \(n + 1\), which is a contradiction. Thus \(p(x)\) had at most \(n\) roots to begin with.

Question 4

Let \(p(x) \in \mathbb{C}[x]\) be a nonzero polynomial. Consider the following two properties of \(p(x)\):

(A) The quotient ring \(\mathbb{C}[x]/(p(x))\) is isomorphic to a product ring \(\mathbb{C} \times \cdots \times \mathbb{C}\).

(B) The polynomial \(p(x)\) has no repeated roots.

Prove that these two properties are equivalent: \((A) \iff (B)\).

Write \(\mathbb{C}^n\) for the \(n\)-fold product ring \(\mathbb{C} \times \cdots \times \mathbb{C}\).

Suppose first that \(p(x)\) has no repeated roots. By the fundamental theorem of algebra, \(p(x)\) factors as \(p(x) = u(x - \alpha_1) \cdots (x - \alpha_n)\) where \(u \neq 0\) and \(\alpha_i \in \mathbb{C}\) are all distinct. Then, consider the map \(\phi: \mathbb{C}[x]/(p(x)) \to \mathbb{C}^n\), given by evaluating at each of the roots of \(p\):

\[
\phi(f) = (f(\alpha_1), f(\alpha_2), \ldots, f(\alpha_n)).
\]

Then, \(\phi(f) = (0, \ldots, 0)\) if and only if \(f(\alpha_i) = 0\) for all \(i\). This happens if and only if \(f \in (p(x))\), so indeed \(\ker \phi = (p(x))\) and \(\phi\) is well-defined. Note that \(\phi\) is just the product of \(n\) different evaluation maps, which we have shown (e.g. HW7 Q3) are individually ring homomorphisms. Thus \(\phi\) is a ring homomorphism. It remains to show that \(\phi\) is an isomorphism. By the argument before, \(\ker \phi = (p(x))\) exactly so \(\phi\) is injective.

To prove surjectivity, pick any \((z_1, \ldots, z_n) \in \mathbb{C}^n\). There exists by Lagrange interpolation a polynomial \(q(x) \in \mathbb{C}[x]\) for which \(q(\alpha_i) = z_i\). Explicitly,

\[
q(x) = \sum_{i=1}^{n} z_i \prod_{j \neq i} (x - \alpha_j) / \prod_{j \neq i} (\alpha_i - \alpha_j).
\]

For this polynomial \(q\), \(\phi(q) = (z_1, \ldots, z_n)\). Thus \(\phi\) is bijective and therefore an isomorphism of rings, as desired.

Conversely, suppose the quotient ring \(\mathbb{C}[x]/(p(x))\) is isomorphic to some product \(\mathbb{C}^n\). Define a nilpotent element of a ring \(R\) to be an element \(r \in R\) for which some power vanishes: \(r^m = 0\) for some \(m \in \mathbb{N}\). We claim that \(\mathbb{C}^n\) has no nonzero nilpotents. Indeed, if \((z_1, \ldots, z_n) \in \mathbb{C}^n\), then multiplication is coordinatewise, so \((z_1, \ldots, z_n)^m = 0\) iff all of the \(z_i\) are zero.

Thus, \(\mathbb{C}[x]/(p(x))\), being isomorphic to \(\mathbb{C}^n\), must also have no nonzero nilpotents. Write by the fundamental theorem of algebra

\[
p(x) = u(x - \alpha_1)^{m_1}(x - \alpha_2)^{m_2} \cdots (x - \alpha_r)^{m_r}
\]

where now the \(\alpha_i\) are the distinct roots of \(p\) but the multiplicities \(m_i\) are not necessarily 1. In fact, if \(p(x)\) has repeated roots, then some \(m_i \neq 1\), and so the function \(q(x) = (x - \alpha_1)(x - \alpha_2) \cdots (x - \alpha_r)\) is not a multiple of \(p\), so \(q \neq 0\) in \(\mathbb{C}[x]/(p(x))\). But \(q(x)^M\) is a multiple of \(p\), where \(M = \max(m_1, \ldots, m_r)\), so \(q(x)^M = 0\) in \(\mathbb{C}[x]/(p(x))\), and therefore \(q\) would be a nonzero nilpotent in \(\mathbb{C}[x]/(p(x))\). Since \(\mathbb{C}[x]/(p(x))\) has no nonzero nilpotents, it follows that all the \(m_i = 1\) and \(p(x)\) has no repeated roots, as desired.

Question 5

Let \(R = \mathbb{Z}/5\infty\mathbb{Z}\) (just like the ring \(\mathbb{Z}/10\infty\mathbb{Z}\) from HW6, but in base 5 instead).

(a) **Prove that \(R = \mathbb{Z}/5\infty\mathbb{Z}\) is a domain.**

One way of explicitly describing the elements \(r \in R\) is to identify them with infinite sequences \((r_1, r_2, \ldots)\) where \(r_i \in \mathbb{Z}/5\mathbb{Z}\) and \(r_i \equiv r_{i-1} \pmod{5}\). Addition and multiplication is coordinatewise. Suppose \(r, s \in R\) are identified with sequences \((r_1, r_2, \ldots)\) and \((s_1, s_2, \ldots)\), and \(r, s \neq 0\). We want to show that \(rs \neq 0\).

But if \(rs = 0\), then \(r_ir_i \equiv 0 \pmod{5}\) for all \(i\). In particular, for each \(i\), one of \(r_i\) or \(s_i\) is divisible by \(5^{i/2}\). Since \(r_i \equiv r_{i/2} \pmod{5}\) and \(s_i \equiv s_{i/2} \pmod{5}\), it follows that for all \(i\), either \(r_{i/2} \equiv 0 \pmod{5}\) or \(s_{i/2} \equiv 0 \pmod{5}\).
In particular, one of \((r_1, r_2, \ldots) \) and \((s_1, s_2, \ldots) \) has infinitely many terms equal to zero (in the appropriate ring \(\mathbb{Z}/5\mathbb{Z} \)). But then every term before each zero must also be zero. Thus, one of \(r, s \) is zero, and there are no nontrivial zero divisors in \(R \), as desired.

(b) Describe which elements of \(R = \mathbb{Z}/5\mathbb{Z} \) are units.

The answer is all elements for which \(r_1 \not\equiv 0 \pmod{5} \). Concretely, in base 5 this includes all “infinite base-5 integers” which do not end in zero. To prove this rigorously, one must construct an \(s \) for each such \(r \) for which \(rs = 1 \) - in other words, to give a sequence \((s_1, s_2, \ldots) \) for which \(r_i s_i \equiv \pmod{5} \) for all \(i \). This turns out to be a special case of an important result known as Hensel’s Lifting Lemma.

(c) Let \(K \) be the fraction field of domain \(R = \mathbb{Z}/5\mathbb{Z} \). Give a concrete description of \(K \). What are its elements? What are the operations of addition/multiplication on these elements? Can one easily see from your description that every nonzero element is invertible, or is that difficult to see? Sketch a proof that your description is correct.

One way of defining \(K \) is as the set of fractions \(5^nu \) where \(n \in \mathbb{Z} \) and \(u \in R \) is a unit, together with 0. By part (b), every element \(r \in R \) can be written as \(5^nu \) for some \(n \geq 0 \) and some unit \(u \) by dividing \(r \) by the highest power of 5 dividing \(r \).

Addition and multiplication work in the obvious ways. If \(5^mu \) and \(5^nv \) are two elements for which \(m \leq n \) (without loss of generality), \(5^m u + 5^n v = 5^m (u + 5^n m v) \), where the latter addition is addition in \(R \). It is possible for powers of 5 to appear in the sum \(u + v\n \) if \(n = m \); in this case, factor out the largest power of 5 dividing \(u + v \) and combine it with \(5^m \). Multiplication is just

\[
(5^m u)(5^n v) = 5^{n+m}(uv).
\]

Every nonzero element \(5^nu \) has an inverse \(5^{-n} u^{-1} \) since \(u \) is a unit in \(R \).

The point is that the only elements not invertible already in \(R \) are multiples of 5, and so “inverting 5” is all that’s necessary to obtain the fraction field.

Question 6

Suppose that \(R \) is a commutative ring which contains \(\mathbb{Z} \).

(a) Prove that if \(P \subset R \) is a prime ideal of \(R \), then \(P \cap \mathbb{Z} \) is a prime ideal of \(\mathbb{Z} \).

Certainly, \(P \cap \mathbb{Z} \) is an ideal of \(\mathbb{Z} \), since \(P \) itself must be closed under multiplication by \(\mathbb{Z} \subseteq R \). Suppose for the sake of contradiction that \(P \) is prime but \(P \cap \mathbb{Z} \) is not prime in \(\mathbb{Z} \). Then, since the ideals of \(\mathbb{Z} \) are just \(n\mathbb{Z} \) and are prime if \(n \) is prime, this implies that \(P \cap \mathbb{Z} = n\mathbb{Z} \) for a composite \(n \). Pick any nontrivial factorization \(n = ab \) of \(z \). Since \(a, b \in \mathbb{Z} \subseteq R \) as well, it follows that \(ab \in P \) but \(a, b \not\in P \), so \(P \) is not a prime ideal. This is the contradiction we were looking for.

(b) Part (a) defines a function \(\beta : \{ \text{prime ideals of } R \} \to \{ \text{prime ideals of } \mathbb{Z} \} \). Construct an explicit commutative ring \(R \) containing \(\mathbb{Z} \) such that the image of \(\beta \) is

\[
\text{im}\beta = \{(0), (5), (7), (11), (13), \ldots \}
\]

i.e. all prime ideals except (2) and (3). Prove (or at least sketch a proof) \(R \) has this property.

One such ring is \(R = \mathbb{Z}[\frac{1}{2}] = \{ \frac{a}{2^n m}, a \in \mathbb{Z}, m, n \in \mathbb{N} \} \). This ring certainly contains \(\mathbb{Z} \). Also, note that \((p) \subset R \) is still a prime ideal for every \(p \in \mathbb{Z} \) prime which is not 2 and 3, and \((0) \subset R \) is as well since \(R \) is a domain. For these, it is easy to check that \(\beta(pR) = p\mathbb{Z} \) and \(\beta(0R) = 0\mathbb{Z} \).

Thus, \(\text{im}\beta \supseteq \{(0), (5), (7), (11), (13), \ldots \} \). It remains to show that (2) and (3) are not in this image.

If (2) \(\in \text{im}\beta \), there is some prime \(P \subset R \) for which \(P \cap \mathbb{Z} = 2\mathbb{Z} \). But then \(P \ni 2 \), and \(\frac{1}{2} \) lies in \(R \), so \(P \ni \frac{1}{2} \cdot 2 = 1 \). Thus \(P \) must be the entire ring, contradicting the fact that \(P \cap \mathbb{Z} = 2\mathbb{Z} \). Similarly, \(P \cap \mathbb{Z} \not\ni 3\mathbb{Z} \) for any \(P \subset R \).

Question 7

(a) Let \(F \) be a field, and let \(R \subset F \) be a subring with the property that for every \(x \in F \), either \(x \in R \) or \(\frac{1}{x} \in R \) (or both).

Prove that if \(I \) and \(J \) are two ideals of \(R \), then either \(I \subseteq J \) or \(J \subseteq I \).
Suppose for the sake of contradiction that there exist two ideals \(I, J \) neither of which contains the other. Then, there are elements \(x \in I \setminus J \) and \(y \in J \setminus I \). Since all ideals contain 0, we have \(x, y \neq 0 \). Thus, \(x/y \in F \), and the property given tells us that either \(x/y \) or its inverse \(y/x \) lies in \(R \). Without loss of generality, \(x/y \in R \). Then, since \(J \) is an ideal of \(R \), \(x = (x/y) \cdot y \in J \), contradicting the assumption \(x \not\in J \). Thus one of \(I, J \) contains the other.

(b) Construct a proper subring \(R \subseteq \mathbb{Q} \) such that for every \(x \in \mathbb{Q} \), either \(x \in R \) or \(\frac{1}{x} \in R \) (or both).

Let
\[
R = \{ \frac{a}{b} \in \mathbb{Q} : 2 \nmid b \},
\]
i.e. the ring of all fractions with odd denominator. Sums and products of such fractions also have odd denominator, so \(R \) is a subring of \(\mathbb{Q} \), and it is proper because \(\frac{1}{2} \not\in R \).

For any \(x \in \mathbb{Q} \), \(x \) can be written as \(\frac{a}{b} \), where \(a, b \) are coprime. Thus, at least one of \(a \) and \(b \) is odd, so at least one of \(a/b \) and its inverse \(b/a \) lies in \(R \), as desired.

Question 8

Given an abelian group \(A \), we say the 10-dual \(A^\vee \) is the abelian group of homomorphisms \(f : A \rightarrow \mathbb{Z}/10\mathbb{Z} \) under pointwise addition.

We call an abelian group 10-invisible if \(A^\vee = 0 \), i.e. if there are no nonzero group homomorphisms \(f : A \rightarrow \mathbb{Z}/10\mathbb{Z} \).

(a*) Compute \(A^\vee \) for \(A = \mathbb{Z} \), \(A = \mathbb{Z}/6\mathbb{Z} \), and \(A = \mathbb{Z}/10\mathbb{Z} \).

As abelian groups, the answers are \(\mathbb{Z}^\vee \simeq \mathbb{Z}/10\mathbb{Z} \), \((\mathbb{Z}/6\mathbb{Z})^\vee \simeq \mathbb{Z}/2\mathbb{Z} \), and \((\mathbb{Z}/10\mathbb{Z})^\vee \simeq \mathbb{Z}/10\mathbb{Z} \). These can be computed using the fact that a homomorphism between cyclic groups is determined by the image of a generator.

(b) We know from class (or will soon) that every finitely-generated abelian group \(A \) is isomorphic to
\[
A \cong \mathbb{Z}^r \oplus \mathbb{Z}/n_1\mathbb{Z} \oplus \mathbb{Z}/n_2\mathbb{Z} \oplus \cdots \oplus \mathbb{Z}/n_k\mathbb{Z}
\]
for a unique \(r \geq 0 \) and a unique sequence of positive integers \(n_1 | n_2 | \cdots | n_k \).

In terms of this description, which finitely-generated abelian groups are 10-invisible?

If there is a nonzero homomorphism \(f : G_i \rightarrow \mathbb{Z}/10\mathbb{Z} \) from any single factor in a direct sum \(\bigoplus G_i \) of abelian groups to \(\mathbb{Z}/10\mathbb{Z} \), then there is a nonzero homomorphism from the whole sum to \(\mathbb{Z}/10\mathbb{Z} \), given by first projecting an element \((a_1, \ldots, a_n) \in \bigoplus G_i \) onto the \(i \)-th coordinate \(a_i \) and then applying \(f \).

Thus it suffices to check which cyclic groups \(\mathbb{Z} \) or \(\mathbb{Z}/n\mathbb{Z} \) are 10-invisible. The answer is exactly the groups \(\mathbb{Z}/n\mathbb{Z} \) for which \((n, 10) = 1 \), which we show now.

First, if \((n, 10) = 1\), then any homomorphism \(f : \mathbb{Z}/n\mathbb{Z} \rightarrow \mathbb{Z}/10\mathbb{Z} \) must send \(\bar{1} \) to an element with order dividing \(n \). But no nonzero element of the range has order dividing \(n \), so \(f = 0 \).

Conversely, if \(2 \nmid n \), there exists a nonzero homomorphism \(f : \mathbb{Z}/n\mathbb{Z} \rightarrow \mathbb{Z}/10\mathbb{Z} \) given by sending \(\bar{1} \) to 5.

Similarly, if \(5 \nmid n \), one can simply send \(1 \) to 2.

As a result, the finitely-generated 10-invisible abelian groups are exactly those finite abelian groups of the form
\[
\mathbb{Z}/n_1\mathbb{Z} \oplus \mathbb{Z}/n_2\mathbb{Z} \oplus \cdots \oplus \mathbb{Z}/n_k\mathbb{Z}
\]
where \(n_1 | n_2 | \cdots | n_k \), and \((n_k, 10) = 1\).

(c) Choose two of the following abelian groups \(A \), and for each, describe as best you can the abelian group \(A^\vee \):

(i) \(A = \mathbb{Q} \).

We show \(\mathbb{Q}^\vee = 0 \). If not, some \(f : \mathbb{Q} \rightarrow \mathbb{Z}/10\mathbb{Z} \) is nonzero, and sends \(a/b \) to \(\bar{n} \) for \(10 \nmid n \) and \(a/b \in \mathbb{Q} \).

But then it must send \(a/10b \) to an element \(\bar{m} \in \mathbb{Z}/10\mathbb{Z} \) for which \(10\bar{m} = \bar{n} \), which is absurd.

(ii) \(A = \mathbb{Z}/10\mathbb{Z} \).

We show \((\mathbb{Z}/10\mathbb{Z})^\vee \simeq \mathbb{Z}/5\mathbb{Z} \). In fact, the five homomorphisms are \(f_i, 0 \leq i \leq 4 \), where \(f_i(a/6^k) = \bar{2a}i \) (mod 10). It is easy to check that these maps are homomorphisms - note that \(6\bar{m} \equiv \bar{m} \) (mod 10) for any even \(m \). Conversely, to show that these are the only homomorphisms can be reduced to checking that if \(f(1) = \bar{0} \) then \(f = 0 \).
Suppose there is a nonzero group homomorphism f for which $f(1) = \bar{0}$. Then, $6^k f(1/6^k) = \bar{0}$, so $f(1/6^k)$ is an element divisible by 5 in $\mathbb{Z}/10\mathbb{Z}$, i.e. $f(1/6^k) \in \{\bar{0}, \bar{5}\}$. But if $f(1/6^k) = 5$, then $6f(1/6^{k+1}) \equiv 5 \pmod{10}$, which is absurd since 5 is odd. Thus, $f(1/6^k) = 0$ for all k. It now follows that $f(a/6^k) = 0$ for all a,k, as desired.

(iii) $A = \mathbb{Q}/\mathbb{Z}$,

Any group homomorphism $\mathbb{Q}/\mathbb{Z} \to \mathbb{Z}/10\mathbb{Z}$ can be precomposed with the quotient map $\mathbb{Q} \to \mathbb{Q}/\mathbb{Z}$ to give a homomorphism $\mathbb{Q} \to \mathbb{Z}/10\mathbb{Z}$. By (i) there are no such nonzero maps, so $(\mathbb{Q}/\mathbb{Z})^\vee = 0$ as well.

(iv) $A = \mathbb{Z}/10^\infty\mathbb{Z}$.

We claim that $(\mathbb{Z}/10^\infty\mathbb{Z})^\vee \simeq \mathbb{Z}/10\mathbb{Z}$, and the ten maps are given by $f_i(r) = ir \pmod{10}$ for each of $i = 0, \ldots, 9$. These are certainly homomorphisms; it remains to check that they are all possible ones.

Note that $f(10r) = 10f(r) \equiv 0 \pmod{10}$, so every multiple of 10 is sent to zero in $\mathbb{Z}/10\mathbb{Z}$. Also, every $r \in \mathbb{Z}/10^\infty\mathbb{Z}$ can be written as $r_0 + 10r_1$ where $r_0 \in \{0, \ldots, 9\}$ is the ones digit and $r_1 \in \mathbb{Z}/10^\infty\mathbb{Z}$. Thus, for f to be a group homomorphism,

$$f(r) = f(r_0 + 10r_1) = r_0 f(1) + 10f(r_1) = r_0 f(1).$$

Thus, f is uniquely determined by $f(1)$, and we’re done.