Math 120 Homework 8 Solutions

May 26, 2018

Exercise 7.1.26. Let \(K \) be a field. A discrete valuation on \(K \) is a function \(\nu : K^\times \to \mathbb{Z} \) satisfying

(i) \(\nu(ab) = \nu(a) + \nu(b) \) (i.e. \(\nu \) is a homomorphism from the multiplicative group of nonzero elements of \(K \) to \(\mathbb{Z} \)),

(ii) \(\nu \) is surjective, and

(iii) \(\nu(x + y) \geq \min\{\nu(x), \nu(y)\} \) for all \(x, y \in K^\times \) with \(x + y \neq 0 \).

The set \(R = \{ x \in K^\times | \nu(x) \geq 0 \} \cup \{0\} \) is called the valuation ring of \(\nu \).

(a) Prove that \(R \) is a subring of \(K \) which contains the identity. (In general, a ring \(R \) is called a discrete valuation ring if there is some field \(K \) and some discrete valuation \(\nu \) on \(K \) such that \(R \) is the valuation ring of \(\nu \)). (b) Prove that for each nonzero element \(x \in K \) either \(x \) or \(x^{-1} \) is in \(R \). (c) Prove that an element \(x \) is a unit in \(R \) if and only if \(\nu(x) = 0 \).

Proof. (a) It suffices to check that \(R \) contains 1 and is closed under addition, additive inverses, and multiplication.

Since

\[\nu(1) = \nu(1 \cdot 1) = \nu(1) + \nu(1) \]

by property (i), it follows that \(\nu(1) = 0 \), so \(1 \in R \).

Suppose \(a, b \in R \) are nonzero elements (if either are zero the sum is obviously in \(R \)), so that \(\nu(a) \geq 0 \) and \(\nu(b) \geq 0 \). We would like to show \(a + b \in R \). If \(a + b = 0 \), we know \(0 \in R \) so we’re done. Otherwise,

\[\nu(a + b) \geq \min\{\nu(a), \nu(b)\} \geq 0, \]

so \(a + b \in R \) as well. Thus \(R \) is closed under addition.

Suppose \(a \in R \) is nonzero. Note that

\[0 = \nu(1) = \nu(-1 \cdot -1) = \nu(-1) + \nu(-1) \]

by property (i), so \(\nu(-1) = 0 \). Thus,

\[\nu(-a) = \nu(-1 \cdot a) = \nu(-1) + \nu(a) = \nu(a) \geq 0. \]

Thus, \(-a \in R \) and \(R \) is closed under additive inverses.

Finally, if \(a, b \in R \) are nonzero elements (if either are zero the product is zero), then \(\nu(a) \geq 0 \) and \(\nu(b) \geq 0 \), so

\[\nu(ab) = \nu(a) + \nu(b) \geq 0, \]

and so \(ab \in R \) as well. This shows \(R \) is closed under multiplication and finishes the proof.

(b) We have

\[\nu(x) + \nu(x^{-1}) = \nu(x \cdot x^{-1}) = \nu(1) = 0, \]

so at least one of \(\nu(x), \nu(x^{-1}) \) is nonnegative.

(c) If \(x \) is a unit, by definition its inverse \(x^{-1} \) also lies in \(R \). But by the calculation in part (b), \(\nu(x^{-1}) = -\nu(x) \) so if they’re both nonnegative then \(\nu(x) = 0 \). Conversely, if \(\nu(x) = 0 \), \(\nu(x^{-1}) = 0 \) as well so its inverse lies in \(R \) and \(x \) is a unit in \(R \).

Exercise 7.3.29*. Let \(R \) be a commutative ring. Recall (cf. Exercise 13, Section 1) that an element \(x \in R \) is nilpotent if \(x^n = 0 \) for some \(n \in \mathbb{Z}^+ \). Prove that the set of nilpotent elements form an ideal – called the nilradical of \(R \) and denoted by \(\mathfrak{n}(R) \).
Proof. We need to check two things.

First, if \(x, y \in R\) are nilpotent, we need to check that \(x + y\) is as well. If \(x^n = 0\) and \(y^n = 0\), check that every term of the binomial expansion of \((x + y)^{m+n-1}\) contains either a factor of \(x^m\) or \(y^n\), so \((x + y)^{m+n-1} = 0\) as well, and \(x + y\) is nilpotent.

Second, if \(x \in R\) is nilpotent and \(a \in R\) is any element, we need to check \(ax\) is nilpotent. But if \(x^n = 0\) then \((ax)^n = a^nx^n = 0\) since \(R\) is commutative, so we’re done. \(\square\)

Exercise 7.4.14(a,b,c,d)*. Assume \(R\) is commutative. Let \(x\) be an indeterminate, let \(f(x)\) be a monic polynomial in \(R[x]\) of degree \(n \geq 1\) and use the bar notation to denote passage to the quotient ring \(R[x]/(f(x))\).

(a) Show that every element of \((R[x]/(f(x)))\) is of the form \(p(x)\) for some polynomial \(p(x) \in R[x]\) of degree less than \(n\).

(b) Prove that if \(p(x)\) and \(q(x)\) are distinct polynomials of \(R[x]\) which are both of degree less than \(n\), then \(\overline{p(x)} \neq \overline{q(x)}\).

(c) If \(f(x) = a(x)b(x)\) where both \(a(x)\) and \(b(x)\) have degree less than \(n\), prove that \(\overline{a(x)}\) is a zero divisor in \(R[x]/(f(x))\).

(d) If \(f(x) = x^n - a\) for some nilpotent element \(a \in R\), prove that \(\overline{a}\) is nilpotent in \(R[x]/(f(x))\).

Proof. (a) Every element is certainly \(\overline{p(x)}\) for some polynomial \(p\). By the division algorithm for polynomials over a commutative ring, it is possible to write every \(p(x)\) as

\[
p(x) = q(x)f(x) + r(x)
\]

where \(r(x)\) has degree less than \(n\). Then \(\overline{p(x)} = \overline{r(x)}\), and every element of the quotient can be expressed this way.

(b) If \(\overline{p(x)} = \overline{q(x)}\), then \(p(x) - q(x) \in (f(x))\), which would imply that \(p(x) - q(x)\) is a multiple of \(f(x)\). But \(p(x) - q(x)\) has lower degree than \(f(x)\), so this is impossible.

(c) Simply note \(\overline{a(x)b(x)} = 0\), but \(a(x), b(x)\) are both nonzero by part (b).

(d) Since \(a\) is nilpotent in \(R\), there is \(m \in \mathbb{Z}^+\) for which \(a^m = 0\). Thus \(\overline{(a)m}n = \overline{(ax)m} = \overline{am} = 0\). \(\square\)

Question 0. Prove that the ideal \(I = (x^2 + 1)\) in \(\mathbb{R}[x]\) is maximal. (For maximum understanding, try to prove this with the same approach we used in class for the ideal \((x - 2, y - 3)\) in \(\mathbb{R}[x,y]\).)

Proof. Recall that an ideal is maximal iff quotienting by it results in a field. Consider the ring homomorphism \(\alpha : \mathbb{R}[x] \rightarrow \mathbb{C}\) which sends \(x \mapsto i\). Any element of \(\mathbb{C}\) is of the form \(a + bi\) where \(a, b \in \mathbb{R}\), so \(\alpha\) is surjective. It follows that \(\mathbb{R}[x]/\ker(\alpha) \simeq \mathbb{C}\), which is a field.

It remains to notice that \(\ker(\alpha) = I\). On the one hand, \(x^2 + 1 \mapsto i^2 + 1 = 0\), so \(I \subseteq \ker(\alpha)\). On the other hand, consider any polynomial \(p(x) \in \ker(\alpha)\). The map \(\alpha\) just evaluates \(p(x)\) at \(i\), so \(p(i) = 0\). But \(p\) is a real polynomial, so its roots come in conjugate pairs; therefore \(p(-i) = 0\) as well. Therefore, \(p(x)\) is divisible by the product \((x - i)(x + i) = x^2 + 1\), and \(p(x) \in I\), as desired.

Thus, \(I = \ker(\alpha)\) and \(\mathbb{R}[x]/I \simeq \mathbb{C}\) is a field, implying that \(I\) is maximal in \(\mathbb{R}[x]\). \(\square\)

Question 1. Let \(R \subset \mathbb{R}[x]\) be the subring of \(\mathbb{R}[x]\) consisting of polynomials whose coefficient of \(x\) is 0:

\[
R = \left\{ f(x) = a_0 + a_2x^2 + \cdots + a_nx^n \mid a_i \in \mathbb{R} \right\}
\]

\[
\mathbb{R}[x] = \left\{ f(x) = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n \mid a_i \in \mathbb{R} \right\}
\]

You may use without proof that if \(g(x)\) and \(h(x)\) are polynomials in \(\mathbb{R}[x]\), then \(\deg(gh) = \deg(g) + \deg(h)\).

Exhibit an ideal \(I \subset R\) in \(R\) that is not principal, and justify your answer by proving that \(I\) is not a principal ideal of \(R\).

Proof. One such example is the ideal \(I = (x^2, x^3)\) = \{polynomials with no constant term\}. Suppose \(I\) were principal, i.e. \(I = (f)\). Then, since \(x^2 \in I\), \(x^2\) must be a multiple of \(f\), so \(\deg(f) \leq 2\).

If \(\deg(f) = 0\), then \(f\) is a nonzero constant and \((f) = R\), so \((f) \neq I\).

Also, no polynomials in \(R\) have degree 1. Thus, \(\deg(f) = 2\). But then since \(x^3 \in I\), we can write \(x^3 = f \cdot g\), for some other \(g \in R\). This implies that \(\deg(g) = \deg(x^3) - \deg(f) = 3 - 2 = 1\), which contradicts the fact that no polynomials in \(R\) have degree 1. Therefore, \(I\) cannot be principal. \(\square\)
Question 2. Let \(R = \mathbb{Z}[i] = \{a + bi \mid a, b \in \mathbb{Z}\} \).

(a) Find a prime ideal \(P_2 \subset R \) such that \(P_2 \cap \mathbb{Z} = 2\mathbb{Z} \).

(b) Find a prime ideal \(P_3 \subset R \) such that \(P_3 \cap \mathbb{Z} = 3\mathbb{Z} \).

(c) Find a prime ideal \(P_5 \subset R \) such that \(P_5 \cap \mathbb{Z} = 5\mathbb{Z} \).

Justify your answers. For each one, describe (as best you can) the domain \(R/P \).

Proof. Recall that to prove \(P \) is a prime ideal, it suffices to check that \(R/P \) is a domain.

(a) Take \(P_2 = (1 + i) \). It is easy to check that \(a + bi \in R \) lies in \(P_2 \) if \(a \equiv b \pmod{2} \). Thus \(R/P_2 \) contains exactly two elements \(0 \) and \(1 \). The unique such ring is \(\mathbb{Z}/2\mathbb{Z} \), which is a domain. This implies \(P_2 \) is prime.

The set \(P_5 \cap \mathbb{Z} \) will contain exactly those \(a + bi \) where \(a \equiv b \pmod{2} \) and \(b = 0 \), i.e. the even integers \(2\mathbb{Z} \). We have shown that \(R/P \) consists of exactly these \(9 \) distinct elements, and furthermore that all the nonzero ones are units. Thus \(R/P \) is a field, and \(P_3 \) must be prime. (Note, this field is not \(\mathbb{Z}/9\mathbb{Z} \), which is not even a domain).

It is easy to check that \(P_3 \cap \mathbb{Z} = 3\mathbb{Z} \).

(b) Take \(P_3 = (2 + i) \). The elements of \(R/P_3 \) can certainly be reduced mod 3 in both real and imaginary parts, so every element is of the form \(a + bi \) where \(a, b \in \{0, 1, 2\} \). Also, all of these elements are distinct. To see this, note that if two were the same in \(R/P_3 \), then their difference is also of the same form \(a + bi \) with not both of \(a, b \) zero, and their difference would be zero.

But if \(a, b \in \{1, 2\} \), then \((a + bi)(-a + bi) = -a^2 - b^2 = -1 \), since \(1^2 \equiv 2^2 \equiv 1 \pmod{3} \). Thus \(a + bi \) is a unit and therefore nonzero if \(a, b \in \{1, 2\} \).

The other case is if \(a = 0 \) or \(b = 0 \). If \(a = 0 \), then \(-b^2 = b^2 = 1 \) so \(bi \) is a unit. If \(b = 0 \), then \(\bar{a}^2 = 1 \) so \(a \) is a unit.

We have shown that \(R/P_3 \) consists of exactly these \(9 \) distinct elements, and furthermore that all the nonzero ones are units. Thus \(R/P_3 \) is a field, and \(P_3 \) must be prime. (Note, this field is not \(\mathbb{Z}/9\mathbb{Z} \), which is not even a domain).

(c) Take \(P_5 = (2 + i) \). The elements of \(P_5 \) will be exactly those elements \(a + bi \) for which \(a \equiv 2b \pmod{5} \). We can therefore check that \(R/P_5 \) contains five distinct elements corresponding to the possible residue classes mod 5. The only ring on 5 elements is the field \(\mathbb{Z}/5\mathbb{Z} \), which shows that \(P_5 \) is prime, as desired.

It is easy to check that \(P_5 \cap \mathbb{Z} = 5\mathbb{Z} \). \(\square \)

Question 3. Construct a commutative ring \(L \) with the property that for every commutative ring \(R \),

\[
\text{the \# of ring homomorphisms } \varphi : L \rightarrow R \\
\text{is equal to } \text{the number of elements } r \in R \text{ satisfying } r^2 = 2.
\]

Note that “2” here means the element \(1 + 1 \in R \). (You do not have to prove your answer is correct.)

Proof. The ring \(L \) is \(\mathbb{Z}[x]/(x^2 - 2) \). An alternative description of this ring is \(L = \{a + b\sqrt{2} \mid a, b \in \mathbb{Z}\} \).

It suffices to construct a bijection between the sets

\[\{ \text{ring homomorphisms } L \rightarrow R \} \]

and

\[\{ \text{elements } r \in R \text{ satisfying } r^2 = 2 \} \].

Given an element of \(R \) satisfying \(r^2 = 2 \), let \(\varphi_r \) be the map which sends \(\pi \in L \) to \(r \). To check that this is a well-defined map, note that by Question 3 from Homework 7, there exists a ring homomorphism \(\psi_r : \mathbb{Z}[x] \rightarrow R \) which sends \(x \) to \(r \). The kernel of \(\psi_r \) contains \(x^2 - 2 \), since

\[\psi_r(x^2 - 2) = r^2 - 2 = 0 \]

and so it contains the whole ideal \((x^2 - 2) \). Thus, \(\psi_r \) induces a well-defined ring homomorphism \(\varphi_r : \mathbb{Z}[x]/(x^2 - 2) \rightarrow R \), which is the map we wanted.

Using Question 3 from Homework 7, we see that \(\varphi_r \) is also unique. Otherwise, given two maps \(\varphi_r, \varphi'_r : \mathbb{Z}[x]/(x^2 - 2) \rightarrow R \), they lift to ring homomorphisms \(\mathbb{Z}[x] \rightarrow R \) which both send \(x \) to the same element \(r \). Such a map is unique, so \(\varphi_r = \varphi'_r \).
It remains to check that every ring homomorphism $L \to R$ is one of the φ_r. In fact, if $\varphi : L \to R$ is a ring homomorphism, then $\varphi(\overline{r})$ must satisfy
\[
\varphi(\overline{r})^2 - 2 = \varphi(\overline{r}^2 - 2) = 0,
\]
so φ always sends \overline{r} to some r for which $r^2 = 2$. For this r, $\varphi = \varphi_r$ by the uniqueness mentioned previously. \hfill \qed

Question 4. Construct a commutative ring M with the property that for every commutative ring R,

\[
\text{the } \# \text{ of ring homomorphisms } \varphi : M \to R
\]

is equal to the number $|R^\times|$ of invertible elements in R.

Prove your answer is correct.

Proof. Take $M = \{ \sum_{k=-m}^n a_k x^k \mid m \geq 0, n \geq 0, a_k \in \mathbb{Z} \}$, the so-called ring of Laurent polynomials over \mathbb{Z}. In other words, every element of M is $x^{-m} \cdot p(x)$ for some (regular) polynomial $p(x) \in \mathbb{Z}[x]$.

It suffices to construct a bijection between the sets
\[
\{ \text{ring homomorphisms } M \to R \}
\]
and
\[
\{ \text{invertible elements } r \in R \}.
\]

Given an invertible element $r \in R$, let φ_r be the map which sends $x \in M$ to r (and thus x^{-1} to r^{-1}). A general element $x^{-n}p(x)$ will be sent to $r^{-n}p(r)$. This φ_r is a ring homomorphism, preserving addition, negation, products, and the identity.

To see that given the image of r, φ_r is uniquely determined, notice that for φ_r to be a ring homomorphism,
\[
\varphi_r(\sum_{k=-m}^n a_k x^k) = \sum_{k=-m}^n a_k \varphi_r(x)^k = \sum_{k=-m}^n a_k r^k,
\]
so the images of all elements of M are fixed once the image of x is chosen.

It remains to check that every ring homomorphism $M \to R$ is one of the φ_r. In fact, if $\varphi : M \to R$ is a ring homomorphism, then $\varphi(x^{-1})\varphi(x) = \varphi(1) = 1$, so $\varphi(x)$ must be some invertible element $r \in R$. For this r, $\varphi = \varphi_r$ by the uniqueness mentioned previously. \hfill \qed

Question 5. Can there exist a commutative ring N with the property that for every commutative ring R,

\[
\text{the } \# \text{ of ring homomorphisms } \varphi : N \to R
\]

is equal to the number of elements $r \in R$ such that both r and $1-r$ are units.

Either construct such a ring and prove that your answer is correct (at least outline a proof), or prove that no such ring can exist.

Proof. Take
\[
N = \{ f(x) = x^k (1-x)^\ell p(x) \mid k \in \mathbb{Z}, \ell \in \mathbb{Z}, p(x) \in \mathbb{Z}[x] \text{ satisfies } p(0) \neq 0, p(1) \neq 0 \}.
\]

This is similar to the ring M in Question 4 except that we additionally allow for negative powers of $(1-x)$. The tricky part about proving N is a ring is showing that it is closed under addition. If $f(x) = x^k (1-x)^\ell p(x)$ and $g(x) = x^{k'} (1-x)^{\ell'} q(x)$, then define $k_0 = \min(k, k')$, $\ell_0 = \min(\ell, \ell')$, and check that
\[
f(x) + g(x) = x^{k_0}(1-x)^{\ell_0}(x^{k-k_0}(1-x)^{\ell-\ell_0}p(x) + x^{k'-k_0}(1-x)^{\ell'-\ell_0}q(x)),
\]
where the polynomial in the parentheses is an honest polynomial. However, it may vanish at x and/or $1-x$; in this case, factor out a finite number of factors of x and $1-x$, until this is no longer the case.
It suffices to construct a bijection between the sets
\[\{ \text{ring homomorphisms } N \to R \} \]
and
\[\{ \text{elements } r \in R \text{ for which } r, 1-r \text{ are both units} \}. \]

Given \(r \in R \) such that \(r, 1-r \) are both units, let \(\varphi_r \) be the map which sends \(x \in N \) to \(r \). Again, for \(\varphi_r \) to be a ring homomorphism and \(\varphi_r(x) = r \), it must be the unique "evaluation at \(r \)" map which sends
\[\varphi_r(x^k(1-x)^fp(x)) = r^k(1-r)^fp(r). \]

It remains to check that every ring homomorphism \(N \to R \) is one of the \(\varphi_r \). In fact, if \(\varphi : N \to R \) is a ring homomorphism, then \(\varphi(x^{-1})\varphi(x) = \varphi(1) = 1 \), so \(\varphi(x) \) must be some invertible element \(r \in R \). Also \(\varphi((1-x)^{-1})\varphi(1-x) = \varphi(1) = 1 \), so \(\varphi(1-x) = 1-r \) is also invertible. For this \(r, \varphi = \varphi_r \) by the uniqueness mentioned previously. \(\square \)

In Question 6, you can use the following fact, which we will prove later in the course:

If \(G \) is a finitely generated abelian group, then every subgroup of \(G \) is finitely generated.

(This is false if \(G \) is a finitely generated nonabelian group, as you proved for \(G = F_2 \) in Q5B on HW3.)

Question 6. Given a complex number \(z \in \mathbb{C} \), let \(A(z) \) denote the additive subgroup of \(\mathbb{C} \) generated by the positive powers \(1, z, z^2, z^3, \ldots \) under addition.

For example, \(A(2) = \{ 1, 2, 4, 8, \ldots \} = \mathbb{Z} \), whereas \(A(\frac{2}{3}) = \{ 1, \frac{2}{3}, \frac{4}{3}, \frac{8}{3}, \ldots \} = \{ \frac{2^k}{3^k} \in \mathbb{Q} \} \).

A complex number \(z \in \mathbb{C} \) is called integral if \(A(z) \) is finitely generated as a group under addition.

Question 6(a). Prove that a rational number \(x \in \mathbb{Q} \) is integral if and only if \(x \in \mathbb{Z} \).

Proof. If \(x \in \mathbb{Z} \), then \(A(x) \) is just \(\mathbb{Z} \), so it is finitely generated.

If \(x \in \mathbb{Q} \) is integral, then \(A(x) \) is a finitely generated subgroup of \(\mathbb{Q} \). We showed as a corollary of an earlier homework that the finitely generated subgroups of \(\mathbb{Q} \) are exactly the singly generated subgroups of \(\frac{\mathbb{Z}}{n\mathbb{Z}} \). Thus, for \(x \) to be integral, all of its powers must be integer multiples of a single rational number \(\frac{m}{n} \). This is impossible if \(x \notin \mathbb{Z} \). \(\square \)

Question 6(b). Describe exactly which elements of \(\mathbb{Q}(i) \) are integral. (Recall that \(\mathbb{Q}(i) = \{ a + bi \mid a, b \in \mathbb{Q} \} \).

Proof. The elements are those in \(\mathbb{Z}[i] = \{ a + bi \mid a, b \in \mathbb{Z} \} \).

For any \(z = a + bi \in \mathbb{Z}[i] \), note that \(A(z) \) will be a subgroup of \(\mathbb{Z}[i] \) under addition, which is isomorphic as an abelian group to \(\mathbb{Z} \times \mathbb{Z} \). But any subgroup of \(\mathbb{Z} \times \mathbb{Z} \) is finitely generated (using e.g. the fact in the beginning). Thus \(z \) is integral.

For the other direction, we will use the following version of Gauss’ Lemma. Define the content \(C(p) \) of a polynomial \(p \in \mathbb{Z}[x] \) to be the greatest common divisor of its coefficients.

Lemma 1. For any two polynomials \(p(x), q(x) \in \mathbb{Z}[x] \),
\[C(p)C(q) = C(pq). \]

Proof. Because \(C(p) \) divides all the coefficients of \(p \) and \(C(q) \) divides all the coefficients of \(q \), \(C(p)C(q) \) divides all the coefficients of \(pq \), so \(C(p)C(q))C(pq) \).

Dividing \(p \) by \(C(p) \) and \(q \) by \(C(q) \) we may assume \(C(p) = C(q) = 1 \). It remains to show that in this case, \(C(pq) = 1 \). Write \(p(x) = \sum_i a_ix^i \) and \(q(x) = \sum_j b_jx^j \).

Otherwise, there is a prime \(r \) which divides all of the coefficients of \(pq \), but not all the coefficients of \(p \) or \(q \). Let \(a_i x^i \) and \(b_j x^j \) be the smallest degree monomials in \(p, q \) respectively for which \(r \not| \ a_i \) and \(r \not| \ b_j \). Then, the coefficient of \(x^{i+j} \) in \(pq \) is
\[\sum_{k=0}^{i+j} a_kb_{i+j-k}x^{i+j-k}, \]
and every term except \(a_i x^i b_j x^j \) has a coefficient which is divisible by \(r \). But \(a_i b_j \) is not divisible by \(r \), so this implies that the whole coefficient of \(x^{i+j} \) in \(pq \) is not divisible by \(r \), a contradiction. Thus \(C(pq) = 1 \). \(\square \)
Now suppose $z \in \mathbb{Q}[i]$ is not in $\mathbb{Z}[i]$, but $A(z)$ is finitely generated. Since every element of $A(z)$ can be written as a finite integer linear combination of its generators $1, z, z^2, \ldots$, the finite set of generators can all be written this way too. Thus, $A(z)$ has a finite set of generators which are integer polynomials of z.

It follows that there is some smallest $n \geq 1$ for which $A(z)$ is generated by $1, z, z^2, \ldots, z^{n-1}$.

In particular, z^n can be written as an integer linear combination $z^n = a_{n-1}z^{n-1} + \cdots + a_0$ of the previous generators. Define $p(x) = x^n - a_{n-1}z^{n-1} - \cdots - a_0$, so that z is a root of this polynomial. Since p has real coefficients, z is also a root of p, so p is divisible by the polynomial $q(x) = (x-z)(x-\bar{z})$. We can write $z = (a+bi)/c$ in simplest terms, where $c \geq 2$ shares no factors with both a and b, then

$$q(x) = x^2 - \frac{2a}{c}x + \frac{a^2 + b^2}{c^2}$$

is a polynomial with rational coefficients. The quotient $r(x) = p(x)/q(x)$ will also be a polynomial with rational coefficients. In addition, $p(x)$ and $q(x)$ both have leading coefficient 1, so $r(x)$ does as well.

There exist integers A, B for which $Aq(x) \in \mathbb{Z}[x]$ and $Br(x) \in \mathbb{Z}[x]$, clearing the denominators of r and q. Then, $ABp = (Aq)(Br)$, so by Lemma 1,

$$C(ABp) = C(Aq)C(Br).$$

The left hand side is exactly AB, since $p \in \mathbb{Z}[x]$ to begin with and had leading coefficient 1. But the leading coefficient of Aq is A and the leading coefficient of Br is B, so the right hand side is at most AB. For it to be exactly AB, both $C(Aq) = A$ and $C(Br) = B$ must be the case.

Therefore, $C(Aq) = A$ and $q \in \mathbb{Z}[x]$ to begin with. In particular, $c|2a$ and $c^2|a^2 + b^2$. If $\gcd(a,c) \neq 1$, then $\gcd(a,c)^2|a^2 + b^2$, and $\gcd(a,c)^2|a^2$, so $\gcd(a,c)^2|b^2$, and a, b, c have a common factor, contradicting our assumption that z was written in simplest terms.

Thus, $\gcd(a,c) = 1$, which together with $c|2a$ implies that $c = 2$ and a is odd. Otherwise, $c = 2$ and $4 = c^2|a^2 + b^2$. But $a^2 \equiv 1 \pmod{4}$ and b^2 is either 0 or 1 (mod 4), so this is impossible. We have thus proved that $z \in \mathbb{Z}[i]$.

Question 6(c). Describe exactly which elements of $\mathbb{Q}(\sqrt{3})$ are integral. (Recall that $\mathbb{Q}(\sqrt{3}) = \{a+b\sqrt{3} \mid a, b \in \mathbb{Q}\}$.)

Proof. The answer is $\{a+b\sqrt{3} \mid a, b \in \mathbb{Z}\}$.

The situation is similar to 6(b), replacing i by $\sqrt{3}$. For showing that elements of this set are integral, check that $\mathbb{Z}[\sqrt{3}] \simeq \mathbb{Z} \times \mathbb{Z}$ as an abelian group.

In the other direction, we may again assume that $z \in \mathbb{Q}(\sqrt{3})$ and z is integral, so z is the zero of some polynomial of the form $p(x) = x^n - a_{n-1}z^{n-1} - \cdots - a_0$.

Any such element z not in $\mathbb{Z}[\sqrt{3}] = \{a+b\sqrt{3} \mid a, b \in \mathbb{Z}\}$ can be written in simplest terms as $(a+b\sqrt{3})/c$ where $\gcd(a,b,c) = 1$ and $c \geq 2$. Then, z is also the zero of a quadratic

$$q(x) = x^2 - \frac{2a}{c}x + \frac{a^2 - 3b^2}{c^2}$$

with rational coefficients. Repeating the argument in 6(b), $q(x)|p(x)$, so $q(x)$ has integer coefficients. Therefore, $c|2a$ and $c^2|a^2 - 3b^2$. The first condition again implies that $c = 2$ and a is odd. The second is then impossible by the same argument as before, because $a^2 - 3b^2 \equiv a^2 + b^2 \pmod{4}$ can never be divisible by $c^2 = 4$.

Question 6(d). Describe exactly which elements of $\mathbb{Q}(\sqrt{5})$ are integral. (Recall that $\mathbb{Q}(\sqrt{5}) = \{a+b\sqrt{5} \mid a, b \in \mathbb{Q}\}$.)

Proof. The answer is $\{a+b\frac{\sqrt{5}}{2} \mid a, b \in \mathbb{Z}, a + b \equiv 0 \pmod{2}\}$.

The situation is similar 6(b) and (c), replacing i by $\frac{1+\sqrt{5}}{2}$. For showing that the elements above are indeed integral, check that $\mathbb{Z}[\frac{1+\sqrt{5}}{2}] \simeq \mathbb{Z} \times \mathbb{Z}$ as an abelian group.

In the other direction, we may again assume that $z \in \mathbb{Q}(\sqrt{5})$ and z is integral, so z is the zero of some polynomial of the form $p(x) = x^n - a_{n-1}z^{n-1} - \cdots - a_0$.

6
Any such element z can be written in simplest terms as $(a + b\sqrt{5})/c$ where $\gcd(a, b, c) = 1$ and $c \geq 2$. Then, z is also the zero of a quadratic

$$q(x) = x^2 - \frac{2a}{c}x + \frac{a^2 - 5b^2}{c^2}$$

with rational coefficients. Repeating the argument in 6(b), $q(x)|p(x)$, so $q(x)$ has integer coefficients. Therefore, $c|2a$ and $c^2|a^2 - 5b^2$. The first condition implies $c = 2$ and a is odd. The second implies that b is also odd. This shows that the integral elements of $\mathbb{Q}(\sqrt{5})$ are either elements of $\mathbb{Z}[\sqrt{5}]$, or can be written as $(a + b\sqrt{5})/2$, where a, b are both odd. This is exactly the set described.

\[\Box\]

Question 6(e). Let $x \in \mathbb{C}$ be an integer element, and let $y \in \mathbb{C}$ be an nth root of x (meaning $y^n = x$). Prove that y is integral.

Proof. Notice that $A(y)$ is contained in the union of the n sets $A(x), yA(x), \ldots, y^{n-1}A(x)$. This is because every generator y^m of $A(y)$ can be written as $y^{rn} = x^r$ where $r \leq n - 1$. If g_1, \ldots, g_m are a finite set of generators for $A(x)$, then the set of mn elements $y^i g_j$, $0 \leq i \leq n - 1$, $1 \leq j \leq m$, generate $A(y)$.

\[\Box\]

Question 6(f). Prove that if $x \in \mathbb{C}$ and $y \in \mathbb{C}$ are both integral, then $x + y$ and xy are integral. Conclude that the set $A \subset \mathbb{C}$ of all integral elements of \mathbb{C} forms a subring of \mathbb{C}.

Proof. Let $A(x, y)$ be the additive subgroup of \mathbb{C} spanned by x^iy^j for $i, j \geq 0$.

If $A(x)$ is finitely generated by g_1, \ldots, g_m and $A(y)$ is finitely generated by h_1, \ldots, h_n, then $A(x, y)$ is finitely generated by the mn products $g_i h_j$ for $1 \leq i \leq n$, $1 \leq j \leq m$. To see this, any product x^iy^j can be written as an integer linear combination of $g_i h_j$ by writing x^i as an integer linear combination of the g_i and y^j as an integer linear combination of the h_j.

Now simply observe that $A(x + y)$ and $A(xy)$ are both contained in $A(x, y)$, so using the remark, each is finitely generated. Note that $A(-x) = A(x)$ so A is closed under negation as well. Thus the ring of integral elements of \mathbb{C} forms a subring of \mathbb{C}.

\[\Box\]

Question 6(g). Describe exactly which elements of $\mathbb{Q}(\sqrt{2})$ are integral. $\mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} + c\sqrt{2}^2 : a, b, c \in \mathbb{Z}\}$.

Proof. The answer is $\{a + b\sqrt{2} + c\sqrt{2}^2 : a, b, c \in \mathbb{Z}\}$.

\[\Box\]

Question 6(h). Describe which elements of $\mathbb{Q}(\sqrt{10})$ are integral. $\mathbb{Q}(\sqrt{10}) = \{a + b\sqrt{10} + c\sqrt{10}^2 : a, b, c \in \mathbb{Z}\}$.

Proof. The answer is $\{a + b\sqrt{10} + c\sqrt{10}^2 : a, b, c \in \mathbb{Z}, a + b + c \equiv 0 \mod 3\}$, but proving this is quite difficult.

\[\Box\]

Question 6(i). Prove that $z = 2 \cos(\frac{2\pi}{n})$ is integral for any $n \in \mathbb{N}$.

Proof. This can be done directly using trigonometric identities. Alternately, let $w = \cos(\frac{2\pi}{n}) + \sin(\frac{2\pi}{n})i$. De Moivre’s formula says that

$$w^n = \cos(n \cdot \frac{2\pi}{n}) + \sin(n \cdot \frac{2\pi}{n})i = \cos(2\pi) + \sin(2\pi)i = 1.$$

Therefore Q6(e) tells us that w is integral, since it is an nth root of 1 which is definitely integral, so $A(w)$ is a finitely generated abelian group. Since $z = 2 \cos(\frac{2\pi}{n}) = w + w^{n-1}$ we see that $z \in A(w)$ and thus $A(z) \subset A(w)$. Using the italicized remark above, we conclude that $A(z)$ is finitely generated.

\[\Box\]

Question 6(j). For $z = 2 \cos(\frac{2\pi}{n})$, the group $A(z)$ is isomorphic to \mathbb{Z}_k for some $k = k(n)$ depending on n. Compute the rank $k(n)$ for $n = 3, 4, 5, 6, 7$. Can you express the rank $k(n)$ as a function of n?

Proof. The rank $k(n)$ for $n = 3, 4, 5, 6, 7$ is: $k(3) = 1, k(4) = 1, k(5) = 2, k(6) = 1, k(7) = 3$. For general n, the rank is given by $k(n) = \varphi(n)/2$.

\[\Box\]