Problem 1 (7.3.24 (from HW 5)). a) We will give a direct proof first, and a more elegant proof after.

Fix $J \subset S$ an ideal and consider the preimage $\varphi^{-1}(J) \subset R$ under φ. Let a_1, a_2 be in $\varphi^{-1}(J)$, so that $\varphi(a_1) = j_1, \varphi(a_2) = j_2 \in J$. Then we have

$$\varphi(a_1 + a_2) = \varphi(a_1) + \varphi(a_2) = j_1 + j_2 \in J$$

since J is an ideal. Therefore, $(a_1 + a_2) \in \varphi^{-1}(J)$ which proves that $\varphi^{-1}(J)$ is an additive subgroup of R.

Then, take $a \in \varphi^{-1}(J)$ and $r \in R$. Then $\varphi(a) = j \in J$, and we have

$$\varphi(ar) = \varphi(a)\varphi(r) = j\varphi(r) \in J$$

since J is an ideal. Therefore, $(ar) \in \varphi^{-1}(J)$ which proves that $\varphi^{-1}(J)$ is an ideal.

Now for the more elegant proof: let’s take a step back and consider a more general ring homomorphism $\psi: S \longrightarrow T$, with kernel $\ker(\psi) = J$. We can consider the composition of φ and ψ to obtain

$$\psi \circ \varphi: R \longrightarrow T;$$

we will look at its kernel.

We have

$$\ker(\psi \circ \varphi) = \{r \in R \mid 0 = \psi(\varphi(r))\},$$

but $\psi(\varphi(r)) = 0$ if and only if $\varphi(r) \in J = \ker(\psi)$, and the latter is equivalent to $r \in \varphi^{-1}(J)$. Therefore,

$$\ker(\psi \circ \varphi) = \varphi^{-1}(\ker \psi).$$

Now back to our particular case: we can consider the quotient map $\pi: S \longrightarrow S/J = T$, which has obviously kernel J. Therefore, $\ker(\pi \circ \varphi) = \varphi^{-1}(J)$ is also an ideal.

Let’s consider now the special case where $\varphi: R \hookrightarrow S$ is the inclusion homomorphism of the subring R into S. Then we have

$$\varphi^{-1}(J) = \{r \in R \mid r = \varphi(r) \in J\} = \{r \in R \mid r \in J\} = R \cap J,$$

and thus by the previous proof $R \cap J = \varphi^{-1}(J)$ is an ideal of R for every ideal J of S.
b) Assume now that \(\varphi : R \rightarrow S \) is a surjective homomorphism of rings, and that \(I \subset R \) is an ideal. Let \(a_1 = \varphi(i_1), a_2 = \varphi(i_2) \in \varphi(I) \), then

\[
a_1 + a_2 = \varphi(i_1) + \varphi(i_2) = \varphi(i_1 + i_2),
\]

and since \(i_1 + i_2 \in I \) since \(I \) is an ideal, we get \(a_1 + a_2 \in \varphi(I) \) - so that \(\varphi(I) \) is an additive subgroup of \(S \).

Let now \(\varphi(i) = a \in \varphi(I) \) and \(s \in S \). By surjectivity, there exists some \(r \in R \) with \(\varphi(r) = s \), and then

\[
sa = \varphi(r)\varphi(i) = \varphi(ri) \in \varphi(I)
\]

since \(ri \in I \) because \(I \) is an ideal. Therefore, \(sa \in \varphi(I) \) which proves that \(\varphi(I) \) also is an ideal.

To give a counterexample when \(\varphi \) is not surjective, consider the inclusion \(\mathbb{Z} \hookrightarrow \mathbb{Q} \). Then the ideal of even numbers \(2\mathbb{Z} \subset \mathbb{Z} \) maps to the set of even integers \(2\mathbb{Z} \subset \mathbb{Q} \), but this is not an ideal - since the only ideals of \(\mathbb{Q} \) are 0 and itself, being a field.

Problem 2 (7.4.13). a) Since \(P \) is a prime ideal, by definition \(S/P \) is an integral domain, and it comes with the projection map \(\pi : S \rightarrow S/P \) with kernel \(P \). Now we compose \(\pi \circ \varphi : R \rightarrow T = S/P \) and by the discussion in the previous problem, we have \(\varphi^{-1}(P) = \ker (\pi \circ \varphi) \).

The isomorphism theorem for rings applied to the map \(\pi \circ \varphi \) gives then

\[
R/\ker (\pi \circ \varphi) \cong \text{Im} (\pi \circ \varphi).
\]

Suppose \(\varphi^{-1}(P) = \ker (\pi \circ \varphi) \neq R \), so that the quotient above is a ring (with 0 and 1 distinct elements), and through the isomorphism theorem we get that the image \(\text{Im} (\pi \circ \varphi) \) is a subring of the integral domain \(S/P \), so it is itself an integral domain. In particular, \(R/\varphi^{-1}(P) \) is an integral domain, which means that \(\varphi^{-1}(P) \) is a prime ideal.

Consider now the special case where \(R \) is a subring of \(S \) and \(\varphi : R \hookrightarrow S \) is the inclusion homomorphism: exactly like in the previous problem we have that \(\varphi^{-1}(P) = P \cap R \), so the above argument proves that either \(P \cap R = R \), or \(P \cap R \) is a prime ideal of \(R \).

b) Suppose now that \(\varphi : R \rightarrow S \) is a surjective homomorphism of rings and \(M \subset S \) a maximal ideal. By proposition 12, this means that \(S/M = F \) is a field, and it comes with a quotient map \(\pi : S \rightarrow S/M \) of kernel \(M \).

Composing with \(\varphi \), we obtain a surjective map \(\pi \circ \varphi : R \rightarrow F \) with kernel \(\ker (\pi \circ \varphi) = \varphi^{-1}(\ker \pi) = \varphi^{-1}(M) \). Applying the isomorphism theorem for rings to the map \(\pi \circ \varphi \) yields that

\[
R/\ker (\pi \circ \varphi) \cong \text{Im} (\pi \circ \varphi) = F.
\]

where the last equality holds by surjectivity of \(\pi \circ \varphi \). Thus, \(R/\varphi^{-1}(M) \cong F \) is a field, which means that \(\varphi^{-1}(M) \) is a maximal ideal.

For a counterexample when \(\varphi \) is not surjective, consider again the inclusion map \(\varphi : \mathbb{Z} \hookrightarrow \mathbb{Q} \). As \(\mathbb{Q} \) is a field, the only proper ideal is \((0) \), which therefore is maximal. Since \(\varphi \) is injective, \(\varphi^{-1}(0) = (0) \), but this is not a maximal ideal of \(\mathbb{Z} \), as \(\mathbb{Z}/(0) \cong \mathbb{Z} \) is not a field. [In terms of the previous paragraph, the point is that the image of \(\pi \circ \varphi \) is in general only a subring of the field \(F \). This is a domain (as we proved on HW5), so \(\varphi^{-1}(P) \) is prime, but it does not have to be a field.]
Problem 3 (Q1). a) By definition, we are looking for prime ideals $P \subset \mathbb{Z}/300\mathbb{Z}$. Theorem 8.3 (the lattice isomorphism theorem for rings) says that given a general ring R and an ideal I, there is a bijection between ideals of R/I and ideals of R containing the ideal I. Indeed the bijection is given as in the first problem of this handout, by using the surjective homomorphism $R \rightarrow R/I$ and saying that the ideal $J \subset R$ containing I corresponds to the ideal J/I of R/I, and that any ideal $J' \subset R/I$ is of this form for some $J \subset R$.

Moreover, by problem 2 of this handout, every prime ideal of R/I corresponds to a prime ideal of R.

Now let’s come back to the setting of this problem. By example 2 at page 243, the only ideals of \mathbb{Z} are of the form $n\mathbb{Z}$, i.e. the set of integers multiple of a fixed n. It is immediate that an ideal $n\mathbb{Z}$ is a prime ideal if and only if n is a prime number; for if $n = ab$ is composite, then the ideal being prime means that either a or b are in $n\mathbb{Z}$. But having $1 < |a|, |b| < n$ yields a contradiction, since neither a nor b can be multiples of n.

Therefore, we are looking for ideals $p\mathbb{Z}$ of \mathbb{Z} with p prime and containing $300\mathbb{Z}$. This means of course that the prime number p must divide 300, and hence we have $p \in \{2, 3, 5\}$. The corresponding prime ideals of $\mathbb{Z}/300\mathbb{Z}$ are then the images of $2\mathbb{Z}, 3\mathbb{Z}$ and $5\mathbb{Z}$. We conclude

$$\text{PrimeSpace}(\mathbb{Z}/300\mathbb{Z}) = \{2\mathbb{Z}/300\mathbb{Z}, 3\mathbb{Z}/300\mathbb{Z}, 5\mathbb{Z}/300\mathbb{Z}\}.$$

b) We are now looking for prime ideals $P \subset \mathbb{R}[t]$ such that $\mathbb{R}[t]/P \cong \mathbb{R}$. In other words, we are looking for surjective homomorphisms $\varphi: \mathbb{R}[t] \rightarrow \mathbb{R}$, and then $\ker \varphi$ will be our prime ideal P, by the first isomorphism theorem.

Suppose we have such a map φ, and that $\varphi(t) = a \in \mathbb{R}$. This determines the value of φ on each polynomial $f(t)$, since φ is a ring homomorphism and hence goes through addition and multiplication of monomials.

On the other hand, any value $a \in \mathbb{R}$ gives us a ring homomorphism $\varphi_a: \mathbb{R}[t] \rightarrow \mathbb{R}$ by defining $\varphi_a(t) = a$: indeed the map φ_a can be described as the “evaluation map at a”, i.e. $f(t) \mapsto f(a)$, and this is clearly a ring homomorphism.

We conclude that the family of surjective ring homomorphism $\varphi: \mathbb{R}[t] \rightarrow \mathbb{R}$ coincides with the family of evaluation maps $f(t) \mapsto f(a)$. Call φ_a the map “evaluation at a”. Then we have

$$\ker(\varphi_a) = \{f(t) \in \mathbb{R}[t] \mid f(a) = 0\}$$
$$= \{f(t) \in \mathbb{R}[t] \mid a \text{ is a root of } f\}$$
$$= \{f(t) \in \mathbb{R}[t] \mid (t - a) \text{ divides } f(t)\}$$
$$= (t - a).$$

Therefore we obtain

$$\mathbb{R}\text{-points of } \text{PrimeSpace}(\mathbb{R}[t]) = \{(t - a) \mid a \in \mathbb{R}\}.$$

Now we want to find a non \mathbb{R}-point of $\text{PrimeSpace}(\mathbb{R}[t])$, i.e. a prime ideal $P \subset \mathbb{R}[t]$ such that $\mathbb{R}[t]/P \not\cong \mathbb{R}$. We take $P = (t^2 + 1)$: this is a prime ideal because $\mathbb{R}[t]$ is a unique factorization domain, and the polynomial $t^2 + 1$ is irreducible in $\mathbb{R}[t]$.

On the other hand, the ring $S = \mathbb{R}[t]/(t^2 + 1)$ is not isomorphic to \mathbb{R}. Indeed, the equation $x^2 = -1$ has no solution in \mathbb{R}, but the coset $\bar{t} = t + (t^2 + 1) \in \mathbb{R}[t]/(t^2 + 1)$ is a solution in S! If
we had a ring isomorphism \(\varphi: S \xrightarrow{\cong} \mathbb{R} \), this would force \(\varphi(\bar{t}) \) to be a solution of \(x^2 = -1 \) in \(\mathbb{R} \), which cannot be. [TC: indeed, we saw in class that \(\mathbb{R}[t]/(t^2 + 1) \) is isomorphic to the complex numbers \(\mathbb{C} \).

c) Since \(\mathbb{R}[t] \) is a PID, every prime ideal \(P \subset \mathbb{R}[t] \) is principal. Since PIDs are UFDs, we know that a nonzero principal ideal \((f(t)) \) is prime if and only if \(f(t) \) is an irreducible polynomial. Therefore, the nonzero prime ideals of \(\mathbb{R}[t] \) coincide with the ideals generated by irreducible polynomials.

By the fundamental theorem of algebra, we know that every irreducible polynomial in \(\mathbb{R}[t] \) is either linear, or quadratic with negative discriminant, i.e. \(f(t) = at^2 + bt + c \) with \(\Delta(f) = b^2 - 4ac < 0 \).

Notice that every polynomial in \(\mathbb{R}[t] \) generates the same ideal as its unique associated monic polynomial: indeed if the leading coefficient of a polynomial \(f(t) \) is \(c \neq 0 \in \mathbb{R} \), then \(\frac{1}{c}f(t) \) is a monic polynomial that is associate to \(f(t) \) [and thus generates the same principal ideal.

We conclude
\[
\text{PrimeSpace}(\mathbb{R}[t]) = (0) \cup \{(f) \mid f(t) \in \mathbb{R}[t] \text{ is irreducible } \}
\]
\[
= (0) \cup \{(t - a) \mid a \in \mathbb{R} \} \cup \{(t^2 + bt + c) \mid b^2 - 4c < 0 \}.
\]

d) We need to describe all \(\mathbb{R} \)-points of \(\text{PrimeSpace}(\mathbb{R}[s,t]/(s^2 + t^2 - 1)) \), or in other words all prime ideals \(P \subset \mathbb{R}[s,t]/(s^2 + t^2 - 1) \) such that \(\mathbb{R}[s,t]/(s^2 + t^2 - 1)/P \cong \mathbb{R} \). Every such prime ideal corresponds bijectively to a surjection \(\mathbb{R}[s,t]/(s^2 + t^2 - 1) \twoheadrightarrow \mathbb{R} \), and hence we focus on describing these surjections.

Let now \(\varphi: \mathbb{R}[s,t]/(s^2 + t^2 - 1) \twoheadrightarrow \mathbb{R} \) be one such surjective ring homomorphism. Precomposing with the quotient map \(\pi: \mathbb{R}[s,t] \twoheadrightarrow \mathbb{R}[s,t]/(s^2 + t^2 - 1) \) yields a ring homomorphism
\[
\varphi \circ \pi: \mathbb{R}[s,t] \twoheadrightarrow \mathbb{R}
\]
which is obviously still surjective, and moreover \((\varphi \circ \pi)(s^2 + t^2 - 1) = \varphi(\pi(s^2 + t^2 - 1)) = \varphi(0) = 0 \), so \(s^2 + t^2 - 1 \in \ker(\varphi \circ \pi) \), in other words, every such composition \(\varphi \circ \pi \) has the polynomial \(s^2 + t^2 - 1 \) in its kernel.

On the other hand, suppose that we have a surjection \(\psi: \mathbb{R}[s,t] \twoheadrightarrow \mathbb{R} \) with kernel containing \(s^2 + t^2 - 1 \). Then the map \(\psi \) can be seen as a composition
\[
\mathbb{R}[s,t] \xrightarrow{\pi} \mathbb{R}[s,t]/(s^2 + t^2 - 1) \xrightarrow{\psi} \mathbb{R}[s,t]/\ker(\psi) \cong \text{Im}\psi = \mathbb{R}
\]
where the last equality holds by surjectivity, and the previous one by the first isomorphism theorem for rings.

We have just shown that every surjection \(\varphi: \mathbb{R}[s,t]/(s^2 + t^2 - 1) \twoheadrightarrow \mathbb{R} \) corresponds to a surjection \(\psi: \mathbb{R}[s,t] \twoheadrightarrow \mathbb{R} \) whose kernel \(\ker \psi \) contains \(s^2 + t^2 - 1 \). We will describe this last family of ring homomorphism, and then follow the steps above in the opposite direction to obtain \(\text{PrimeSpace}(\mathbb{R}[s,t]/(s^2 + t^2 - 1)) \).

Suppose than that we have one such surjection \(\psi: \mathbb{R}[s,t] \twoheadrightarrow \mathbb{R} \) with \(s^2 + t^2 - 1 \) in its kernel. Since the only ring homomorphism between \(\mathbb{R} \) and \(\mathbb{R} \) is the identity, \(\psi \) must fix all constants, and hence \(\psi \) is completely determined by the image of the two indeterminates \(s \) and \(t \). Indeed once
such images are chosen, we have that $\psi(p(s, t)) = p(\psi(s), \psi(t))$ for every polynomial $p(s, t) \in \mathbb{R}[s, t]$, as ψ is a ring homomorphism and must "commute" with addition and multiplication.

So what real numbers can $\psi(s) = a$ and $\psi(t) = b$ be? Well, by assumption $s^2 + t^2 - 1$ is in the kernel, so we must have

$$0 = \psi(s^2 + t^2 - 1) = \psi(s)^2 + \psi(t)^2 - 1 = a^2 + b^2 - 1$$

or in other words

$$a^2 + b^2 = 1,$$

so that the images $(a, b) = (\psi(a), \psi(b))$ define a point on the unit circle on the Euclidean plane \mathbb{R}^2. It is easy to see that any point (a, b) on the circle gives rise to a ring homomorphism in the family we are studying, by setting $\psi(s) = a$ and $\psi(t) = b$.

Therefore we found the family of surjective ring maps $\mathbb{R}[s, t] \twoheadrightarrow \mathbb{R}$ with kernel containing $s^2 + t^2 - 1$ and retracing our steps we get that all surjections

$$\varphi: \mathbb{R}[s, t]/(s^2 + t^2 - 1) \twoheadrightarrow \mathbb{R}$$

are obtained by sending $\bar{s} \mapsto a$ and $\bar{t} \mapsto b$ for some point (a, b) on the unit circle.

Recall that what we ultimately want is the prime ideal $P = \ker \varphi$. It is immediate to see that the polynomials $\bar{s} - a$ and $\bar{t} - b$ belongs to $\ker \varphi$, and thus we get $P = \ker \varphi \supseteq (\bar{s} - a, \bar{t} - b)$.

On the other hand, we see that

$$(s - a, t - b) = \pi^{-1} ((\bar{s} - a, \bar{t} - b)) = \pi^* (\bar{s} - a, \bar{t} - b)$$

is exactly the kernel of the "evaluation at (a, b)" map $\mathbb{R}[s, t] \twoheadrightarrow \mathbb{R}$, and as such it is a maximal ideal, because quotienting $\mathbb{R}[s, t]$ by it yields the field \mathbb{R}.

Using again the lattice isomorphism theorem for rings - in particular the crucial fact that it preserves inclusions of ideals - we see that in the quotient map $\mathbb{R}[s, t] \twoheadrightarrow \mathbb{R}[s, t]/(s^2 + t^2 - 1)$ the maximal ideal $(s - a, t - b) \subset \mathbb{R}[s, t]$ corresponds to the prime ideal $(\bar{s} - a, \bar{t} - b)$ contained in P, so what ideal can P correspond to in $\mathbb{R}[s, t]$? Not the entire ring, thus $\pi^{-1}(P) = (s - a, t - b)$ as well - but since the correspondence between ideals is bijective we must have $P = (\bar{s} - a, \bar{t} - b)$.

Finally, we conclude

$$\text{PrimeSpace} \left(\mathbb{R}[s, t]/(s^2 + t^2 - 1) \right) = \{ (\bar{s} - a, \bar{t} - b) \mid a^2 + b^2 = 1 \}.$$

e) [Answers only] Recall that for the ring $R = \mathbb{Z}/10\infty\mathbb{Z}$ of the HW4, we found two "unexpected" zero-divisors that were also nontrivial solutions of $t^2 = t$, i.e. $x = \ldots 625$ and $y = 1 - x = \ldots 376$. Two of our prime ideals will be (x) and (y), notice indeed that in order to get a surjective map $R \twoheadrightarrow R/P$ into a domain, we must send at least one of these two zero-divisors to zero.

The other two prime ideals are those generated by the integers 2 and 5, so we conclude

$$\text{PrimeSpace}(R) = \{ (x), (y), (2), (5) \}.$$

Notice that $(2) \supset (y)$ and $(5) \supset (x)$, so that we have successive surjections $R \twoheadrightarrow R/(x) \twoheadrightarrow R/(5)$: it is easy to see that $R/(5) \cong \mathbb{Z}/5\mathbb{Z}$ is the field with 5 elements, and as we saw when we covered the Chinese Remainder Theorem, $\mathbb{Z}/10\infty\mathbb{Z}/(x)$ is isomorphic to $\mathbb{Z}/5\mathbb{Z}$.

Similarly, we have successive surjections $R \twoheadrightarrow R/(y) \twoheadrightarrow R/(2)$: it is easy to see that $R/(2) \cong \mathbb{Z}/2\mathbb{Z}$ is the field with 2 element, and $R/(y) \cong \mathbb{Z}/2\mathbb{Z}$.

5
Problem 4 (Q2). a) Since \mathbb{Q} is a field, the only prime ideal is (0). Indeed, (0) is the only proper ideal, so it is in fact maximal, and a fortiori prime. Therefore, to describe the map $f^*: \text{PrimeSpace}(\mathbb{Q}) \to \text{PrimeSpace}(\mathbb{Z})$ we only need to describe the image of the single element $(0) \in \text{PrimeSpace}(\mathbb{Q})$.

By definition, $f^* (x_{(0)}) = x_{f^{-1}((0))}$, which is a prime ideal of \mathbb{Z} by exercise 7.4.13. Since $f: \mathbb{Z} \hookrightarrow \mathbb{Q}$ is the inclusion, the preimage of (0) is simply $f^{-1} ((0)) = (0) \cap \mathbb{Z} = (0)_\mathbb{Z}$, the zero ideal in \mathbb{Z}. Therefore, $f^* (x_{(0)}) = x_{(0)_\mathbb{Z}} \in \text{PrimeSpace}(\mathbb{Z})$.

This is also the image of f^*, as $\text{PrimeSpace}(\mathbb{Q})$ consists of the single element (0).

b) We follow a reasoning extremely similar to the one we did in Question 1a. The lattice isomorphism theorem for rings gives a bijection between ideals of the quotient ring R/I and ideals of R containing I. Moreover, by problem 7.4.13 this bijection sends a prime ideal $P/I \subset R/I$ to a prime ideal $P \subset R$.

By example 2 at page 243 of the textbook, the ideals of \mathbb{Z} are exactly those subsets of the form $n\mathbb{Z}$ for nonnegative integers $n \in \mathbb{N}$, and such ideals are prime exactly when $n = p$ is a prime number. On the other hand, in our particular instance we are looking for ideals $n\mathbb{Z} \supset 20\mathbb{Z}$, so we need our prime number p to divide 20. We conclude that

$$\text{PrimeSpace}(\mathbb{Z}/20\mathbb{Z}) = \{ 2\mathbb{Z}/20\mathbb{Z}, 5\mathbb{Z}/20\mathbb{Z} \}.$$

Let’s start with $P = 2\mathbb{Z}/20\mathbb{Z}$, and by definition

$$g^* (2\mathbb{Z}/20\mathbb{Z}) = g^{-1} (2\mathbb{Z}/20\mathbb{Z}) = 2\mathbb{Z},$$

since the preimage $g^{-1} (2\mathbb{Z}/20\mathbb{Z})$ consists of those integers which have even residue class modulo 20, and these are exactly the even integers.

Similarly, taking $P = 5\mathbb{Z}/20\mathbb{Z}$, we have by definition

$$g^* (5\mathbb{Z}/20\mathbb{Z}) = g^{-1} (5\mathbb{Z}/20\mathbb{Z}) = 5\mathbb{Z},$$

since the preimage $g^{-1} (5\mathbb{Z}/20\mathbb{Z})$ consists of those integers which have residue class modulo 20 divisible by 5, and these are exactly the integers divisible by 5.

Thus we conclude

$$g^* (2\mathbb{Z}/20\mathbb{Z}) = 2\mathbb{Z}, \; g^* (5\mathbb{Z}/20\mathbb{Z}) = 5\mathbb{Z}, \; \text{Im}(g^*) = \{ 2\mathbb{Z}, 5\mathbb{Z} \}.$$

c) Since $\varphi: R \to S$ is surjective, the first isomorphism theorem for rings tells us that $S \cong R/\ker \varphi$, so once we denote $\ker \varphi = I$, we can assume that $\varphi: R \to R/I$ is the ring homomorphism, and the corresponding map is

$$\varphi^*: \text{PrimeSpace}(R/I) \to \text{PrimeSpace}(R).$$

Now theorem 8.3 at page 246, the lattice isomorphism theorem for rings, tells us that there is a bijection

$$\{ \text{ideals of } R \text{ containing } I \} \leftrightarrow \{ \text{ideals of } R/I \}.$$
given by \(J \mapsto J/I \) (an ideal of \(R/I \)) in one direction, and by \(R/I \supset J' \mapsto \varphi^{-1}(J') \subset R \) in the opposite direction. In particular, for every ideal \(J \subset R \) containing \(I \), there is only one ideal \(J' \subset R/I \) such that \(\varphi^{-1}(J') = J \).

Suppose then that we have two prime ideals \(P_1, P_2 \subset R/I \) such that
\[
\varphi^{-1}(P_1) = \varphi^*(P_1) = \varphi^*(P_2) = \varphi^{-1}(P_2),
\]
and call \(P \) this prime ideal of \(R \). Since \(P_1 \) is an ideal of \(R/I \), the ideal \(P \subset R \) to which it corresponds contains \(I \). But then by the above considerations, the ideal \(P \) corresponds to a unique ideal \(P/I \) of \(R/I \), therefore \(P_1 = P_2 \), which proves injectivity of \(\varphi^* \).

d) Consider the inclusion \(\varphi : \mathbb{Z} \hookrightarrow \mathbb{Z}[i] \), and the map between prime spaces in opposite direction

\[
\varphi^* : \text{PrimeSpace}(\mathbb{Z}[i]) \rightarrow \text{PrimeSpace}(\mathbb{Z}).
\]

We want to find an element \(x_P \in \text{PrimeSpace}(\mathbb{Z}[i]) \) which maps to \(x_{(2)} \in \text{PrimeSpace}(\mathbb{Z}) \) under \(\varphi^* \), i.e. a prime ideal \(P \subset \mathbb{Z}[i] \) such that
\[
(2) = \varphi^*(P) = \varphi^{-1}(P).
\]

As in problem 7.4.13, since \(\varphi \) is an injection we have that \(\varphi^{-1}(P) = P \cap \mathbb{Z} \): therefore what we are looking for is a prime ideal \(P \subset \mathbb{Z}[i] \) such that \(P \cap \mathbb{Z} = (2) \).

Now we may try to choose \(P = (2) \), the ideal generated by 2 in \(\mathbb{Z}[i] \): unfortunately, this is not a prime ideal anymore! Indeed, \(2 = (1 + i)(1 - i) \) in \(\mathbb{Z}[i] \), and on the other hand neither \((1 + i)\) nor \((1 - i)\) are in the ideal generated by 2 (because \(2(a + bi) = 2a + (2b)i \), which means that every Gaussian integer in the ideal \((2)\) has even real and imaginary parts), so that the containment \((1 + i) \supset (2)\) is strict.

So what to do? Well, we can try to choose \(P = (1 + i) \): this is a proper ideal, because the Norm
\[
\text{Norm} : \mathbb{Z}[i] \rightarrow \mathbb{N} \quad (a + bi) \mapsto a^2 + b^2
\]
is multiplicative, and on the other hand \(\text{Norm}(1 + i) = 2 \), so there can be no Gaussian integer \((a + bi)\) such that \(1 = (a + bi)(1 + i) \), or else \(\text{Norm}(a + bi) = \frac{1}{2} \).

Moreover, \(P \) certainly contains 2, so that \(P \cap \mathbb{Z} \supset (2) \). On the other hand, \(P \cap \mathbb{Z} \neq \mathbb{Z} \), because otherwise \(P \) would contain 1, which we just proved does not happen. Thus
\[
(2) \subseteq P \cap \mathbb{Z} \subsetneq \mathbb{Z}
\]
forces \((2) = P \cap \mathbb{Z}\).

It remains to prove that \(P \) is a prime ideal of \(\mathbb{Z}[i] \): we do that by studying the quotient \(\mathbb{Z}[i]/P \) and showing that it is a domain. The elements of \((1 + i)\), i.e. the multiples of \(1 + i\), are the elements \((a + bi)(1 + i) = (a - b) + (a + b)i\). Any number \(c + di \) with \(c + d \) divisible by 2 can be written in this form (set \(a = \frac{d-c}{2} \) and \(b = \frac{d+c}{2} \)). Therefore
\[
(1 + i) = \{ c + di \mid c + d \text{ is even} \}.
\]

\[^1\text{see also pages 229-230 of the textbook}\]
As an additive subgroup of \((1 + i)\), the ideal \((1 + i)\) is a subgroup of index 2. Therefore \(\mathbb{Z}[i]/(1 + i)\) is some ring with 2 elements. We cannot have \(0 = 1\) (because the zero ring has only one element), so the two elements must be 0 and 1. Then all the additions and multiplications of these two elements are forced on us by the ring axioms. In short, the only ring with two elements is \(\mathbb{Z}/2\mathbb{Z}\). In particular, \(\mathbb{Z}[i]/(1 + i)\) is isomorphic to \(\mathbb{Z}/2\mathbb{Z}\).

f) [Answers only] We have

\[
(\varphi^*)^{-1}(x_{(2)}) = \{\text{prime ideals } P \subset \mathbb{Z}[i] \mid P \cap \mathbb{Z} = (2)\} = \{(1 + i)\};
\]

\[
(\varphi^*)^{-1}(x_{(3)}) = \{\text{prime ideals } P \subset \mathbb{Z}[i] \mid P \cap \mathbb{Z} = (3)\} = \{(3) = 3\mathbb{Z}[i]\};
\]

\[
(\varphi^*)^{-1}(x_{(5)}) = \{\text{prime ideals } P \subset \mathbb{Z}[i] \mid P \cap \mathbb{Z} = (5)\} = \{(i - 2), (i + 2)\};
\]

Consider the quotients \(\mathbb{Z}[i]/P\) for each of the prime ideals above. If \(P = (y)\), the division algorithm explained in class tells us that the coset representatives \(x + P \in \mathbb{Z}[i]/P\) can be chosen so that \(\text{Norm}(x) < \text{Norm}(y)\). But there are only finitely many elements of \(\mathbb{Z}[i]\) with \(\text{Norm}(x)\) less than a fixed constant, because this means we are looking for points on the integer lattice that lie inside the circle of some fixed radius. We conclude that the quotient ring \(\mathbb{Z}[i]/P\) has finitely many element, because there are only finitely many Gaussian integers of norm bounded above by the generator of \(P\). On the other hand, corollary 3 at page 228 tells us that any finite domain is a field, thus each \(\mathbb{Z}[i]/P\) is a finite field.

More explicitly, we have that \(\mathbb{Z}[i]/(1 + i) \cong \mathbb{Z}/2\mathbb{Z}\) is the finite field with two elements (we generally; denote that by \(F_2\)), as seen in question 2d.

With similar considerations, one can conclude that \(\mathbb{Z}[i]/(i - 2) \cong F_5\) and \(\mathbb{Z}[i]/(i + 2) \cong F_5\) are both ring-isomorphic to the field with 5 elements - which turns out to be \(\mathbb{Z}/5\mathbb{Z}\).

Finally, we get that \(\mathbb{Z}[i]/3\mathbb{Z}[i]\) is some field with 9 elements. Be careful, this is NOT \(\mathbb{Z}/9\mathbb{Z}\)!

Indeed, \(\mathbb{Z}/9\mathbb{Z}\) is not even a domain, because \(3 \cdot 3 = 0\).