Math 113: Linear Algebra and Matrix Theory
Thomas Church (church@math.stanford.edu)
math.stanford.edu/~church/teaching/113/

Homework 7

Due Wednesday, February 27 in class.

Question 1. Let V be a vector space with $\dim V = n$. Let U be a subspace of V with $\dim U = k$, and assume that u_1, \ldots, u_k is a basis for U.

a) Prove that if w_1, \ldots, w_k is another basis for U, then
$$ w_1 \wedge \cdots \wedge w_k = a \cdot u_1 \wedge \cdots \wedge u_k $$
for some nonzero $a \in \mathbb{F}$.

b) Let W be another subspace of V, and assume that w_1, \ldots, w_k is a basis for W. (We have dropped the assumption from part a) that $w_i \in U$.)
Prove that if
$$ w_1 \wedge \cdots \wedge w_k = a \cdot u_1 \wedge \cdots \wedge u_k $$
for some nonzero $a \in \mathbb{F}$,
then $U = W$.
[Hint: start with a basis v_1, \ldots, v_ℓ for $U \cap W$, then extend it to a basis v_1, \ldots, v_n for V.]

Question 2. Let v_1, \ldots, v_n be a basis for V. We say that an operator $T \in \mathcal{L}(V)$ is “upper-triangular with respect to the basis v_1, \ldots, v_n” if
$$ T(v_i) \in \text{span}(v_1, \ldots, v_i) \text{ for all } i = 1, \ldots, n. $$
Assume that T is upper-triangular w.r.t. the basis v_1, \ldots, v_n, so for each i we can write
$$ T(v_i) = d_i \cdot v_i + w_i \quad \text{for some } d_i \in \mathbb{F} \text{ and } w_i \in \text{span}(v_1, \ldots, v_{i-1}). $$

a) Prove that $\det(T) = d_1 \cdot d_2 \cdots \cdot d_n$.

b) Prove that each number d_i is an eigenvalue of T. Note that the vectors v_i are almost certainly not eigenvectors of T!
[Hint: I do not think a direct approach is best here. First think about how you would prove it when $d_i = 0$, then reduce the general case to this.]
Question 3. Let V and W be finite-dimensional vector spaces, and let $S: V \to W$ be a linear transformation. Let $S^\top: W^* \to V^*$ (pronounced “S-transpose”) be defined as follows.\footnote{Recall that $V^* = \mathcal{L}(V, \mathbb{F})$.} If $f \in W^*$ is a linear transformation $f: W \to \mathbb{F}$, then $S^\top(f) \in V^*$ is the linear transformation $V \to \mathbb{F}$ defined by

$$S^\top(f)(v) = f(S(v)).$$

(You do not need to prove that $S^\top(f): V \to \mathbb{F}$ is linear, though you should understand why this is true.)

a) Prove that S^\top is a linear transformation from W^* to V^*.

b) Let $\text{Transpose}: \mathcal{L}(V, W) \to \mathcal{L}(W^*, V^*)$ be the function defined by

$$\text{Transpose}(S) = S^\top.$$

Prove that Transpose is a linear transformation from $\mathcal{L}(V, W)$ to $\mathcal{L}(W^*, V^*)$.

c) Prove that $0^\top = 0$ and $I^\top = I$ (this should not be difficult).

d) If $S \in \mathcal{L}(V, W)$ and $R \in \mathcal{L}(W, U)$, prove that

$$(R \circ S)^\top = S^\top \circ R^\top.$$
Question 5. Recall from HW6 that a vector $v = (v_1, \ldots, v_n)$ in \mathbb{R}^n is called a *probability vector* if each entry v_i is ≥ 0, and $v_1 + \cdots + v_n = 1$. A matrix $A \in \text{Mat}_{n \times n}(\mathbb{R})$ is called a *probability matrix* if each column of A is a probability vector.

a) Prove that if A and B in $\text{Mat}_{n \times n}(\mathbb{R})$ are both probability matrices, then their product AB is also a probability matrix. [Hint: there is a smarter solution than just multiplying out the matrices.]

b) Let $T \in \mathcal{L}(\mathbb{R}^n)$, and let A be its matrix (w.r.t. the standard basis e_1, \ldots, e_n). Prove that if A is a probability matrix, then 1 is an eigenvalue of T.

c) Bonus question, for no points: prove that 1 is the *largest* eigenvalue of T.
