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Question 1 (20 points). Let V be a finite-dimensional vector space, and let T ∈ L(V,W ).

Assume that v1, . . . , vn is a basis for V . (For this question only, do not use the Rank-Nullity

Theorem.)

a) Prove that T is injective if and only if T (v1), . . . , T (vn) are linearly independent in W .

Proof. ( =⇒ ) Assume that T is injective. Consider a linear dependence a1T (v1) + · · ·+
anT (vn) = 0. If we set v = a1v1 + · · · + anvn, we have T (v) = T (a1v1 + · · · + anvn) =

a1T (v1) + · · ·+ anT (vn), so our assumption says that T (v) = 0. Since T is injective, this

implies that v = 0. But since v1, . . . , vn is linearly independent (since it is a basis), the

only way we can have a1v1 + · · · + anvn = 0 is if a1 = 0, . . . , an = 0. This shows that

a1T (v1) + · · · + anT (vn) = 0 implies a1 = 0, . . . , an = 0, which is the definition of linear

independence.

( ⇐= ) Assume that T (v1), . . . , T (vn) are linearly independent. Consider u ∈ kerT , so

that T (u) = 0. Since v1, . . . , vn spans V (it is a basis), we can write u = b1v1 + · · ·+ bnvn.

Therefore

0 = T (u) = T (b1v1 + · · ·+ bnvn) = b1T (v1) + · · ·+ bnT (vn).

Since T (v1), . . . , T (vn) are linearly independent, this is only possible if b1 = 0, . . . , bn = 0.

Therefore

u = b1v1 + · · ·+ bnvn = 0 · v1 + · · ·+ 0 · vn = 0.

Therefore u ∈ kerT =⇒ u = 0, or in other words kerT = {0}. By Proposition 3.2, this is

equivalent to injectivity of T .

b) Prove that T is surjective if and only if T (v1), . . . , T (vn) spans W .

Proof. ( =⇒ ) Assume that T is surjective. Therefore for any w ∈ W there exists v ∈ V
such that T (v) = w. Since v1, . . . , vn is a basis, we can write v = a1v1 + · · ·+ anvn. Then

w = T (v) = T (a1v1 + · · ·+ anvn) = a1T (v1) + · · ·+ anT (vn).

This shows that w ∈ span
(
T (v1), . . . , T (vn)

)
. Since this holds for any w ∈W , we conclude

that span
(
T (v1), . . . , T (vn)

)
= W as desired.

(⇐= ) Assume that T (v1), . . . , T (vn) spans W . Then for any w ∈W there exist a1, . . . , an

such that w = a1T (v1) + · · · + anT (vn). Then if we set v = a1v1 + · · · + anvn we have

T (v) = w. Therefore every w ∈W is in the image of T , and T is surjective.
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Question 2 (20 points). We consider a linear transformation T ∈ L
(
P≤2(R), P≤3(R)

)
. Assume

that we are given partial data about T :

T (x2 + 1) = x2 − x

T (1) = 2x+ 1

Given this partial data, answer the following questions. Justify your answers.

a) Could T be injective?

Answer. Yes. For example, consider the transformation T defined by the formula

T (ax2 + bx+ c) = ax2 + (b− 3a+ 2c)x+ (c− a)

We check: T (x2 + 1) = x2 + (−3 + 2)x+ (1− 1) = x2 − x and T (1) = 0 + 2x+ 1 = 2x+ 1,

so this fits the partial data. This map is injective: if ax2 + bx+ c ∈ kerT , we must have

ax2 + (b− 3a+ 2c)x+ (c− a)x = 0 =⇒


a = 0

b− 3a+ 2c = 0

c− a = 0

The first equation implies a = 0; given this, the third becomes c = 0; given these, the

second becomes b = 0. Therefore kerT = {0} and T is injective.

b) Could T be surjective?

Answer. No. We know that dimP≤2(R) = 3 and dimP≤3(R) = 4. However Corollary 3.6

states that T : V →W cannot be surjective if dimV < dimW .

c) Can we determine T (x2 + x+ 1) from the given data?

Answer. No. For the T given in a) we compute T (x2 + x+ 1) = x2. However we could also

define

T (ax2 + bx+ c) = bx3 + ax2 + (−3a+ 2c)x+ (c− a),

(again we can check that T (x2+1) = x2−x and T (1) = 2x+1), in which case T (x2+x+1) =

x3 + x2 − x. Therefore T (x2 + x + 1) cannot be definitively determined from the given

data.

d) Can we determine whether x2 + x+ 1 ∈ Image(T ) from the given data?

Answer. Yes, and it is indeed in the image. We have T (x2 + 2) = T (x2 + 1) + T (1) =

(x2 − x) + (2x+ 1) = x2 + x+ 1, so x2 + x+ 1 ∈ Image(T ).
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Question 3 (20 points). Let V be a finite-dimensional vector space, and let T ∈ L(V ).

Assume that

Image(T ) 6= Image(T 2).

a) Prove that T is not diagonalizable.

Proof. If T is diagonalizable, then there exists a basis v1, . . . , vn for V such that T (vi) = λivi

for all i = 1, . . . , n. For each i, let1

ci =

 1
λi

if λi 6= 0

0 if λi = 0

Note that in either case we have ci · λ2i = λi (in the first case 1
λi
λ2i = λi, in the second case

0 · 02 = 0).

We know that Image(T 2) ⊂ Image(T ) (since ImageTS ⊂ ImageT for any S ∈ L(V ),

including S = T ). We will prove that Image(T ) ⊂ Image(T 2) (for a contradiction). Assume

that w ∈ Image(T ), so we can write w = T (v) for some v ∈ V . Since v1, . . . , vn is a basis

for V , we can write v = a1v1 + · · ·+ anvn. We can then calculate

w = T (v) = T (a1v1 + · · ·+ anvn)

= a1T (v1) + · · ·+ anT (vn)

= a1λ1v1 + · · ·+ anλnvn

Now define

u := a1c1v1 + · · ·+ ancnvn.

I claim that T 2(u) = w. Indeed,

T 2(u) = T 2(a1c1v1 + · · ·+ anc1vn)

= a1c1T
2(v1) + · · ·+ ancnT

2(vn)

= a1c1λ
2
1v1 + · · ·+ ancnλ

2
nvn

= a1λ1v1 + · · ·+ anλnvn

= w.

Since w = T 2(u), we conclude that w ∈ Image(T 2). Since w was an arbitrary element of

ImageT , this shows that Image(T ) ⊂ Image(T 2). Combined with Image(T 2) ⊂ Image(T )

this implies that Image(T ) = Image(T 2), contradicting the hypothesis of the question.

Therefore T must not be diagonalizable.

1Many students forgot to consider the case λi = 0. Since part b tells us that T must have 0 as an eigenvalue,

this is an important case!
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b) Which of the following is true?

(I) T must be invertible.

(II) T must be non-invertible.

(III) T could be invertible or non-invertible.

Prove your answer.

Answer. (II) is correct. If T is invertible, then T is surjective, so Image(T ) = V . Separately,

if T is invertible, then so is T 2. (Its inverse is given by (T−1)2, as we can check by

T 2(T−1)2 = T · T · T−1 · T−1 = T · I · T−1 = T · T−1 = I.)

But if T 2 is invertible, then it is surjective, and so Image(T 2) = V as well. This contradicts

the hypothesis that Image(T ) 6= Image(T 2).
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Question 4 (20 points). Let V be a finite-dimensional vector space over C, and let T ∈ L(V ).

Let U and W be subspaces such that V = U⊕W . Assume that U and W are invariant under T .

(Recall that when U is an invariant subspace, T |U : U → U is the restriction of T to U .)

a) Prove that:

if the minimal polynomial of T |U is x− 2 and the minimal polynomial of T |W is (x− 3)2,

then the minimal polynomial of T is (x− 2)(x− 3)2.

Proof. Let p(x) = (x − 2)(x − 3)2. We first check that p(T ) = 0 on all of V . Since

mT |U (x) = x− 2 we know that

(T − 2I)(u) = (T |U − 2I)(u) = 0

for all u ∈ U , and similarly since mT |W (x) = (x − 3)2 we know that (T − 3I)2(w) =

(T |W − 3I)2(w) = 0 for all w ∈W . Since V = U ⊕W , we can write any v ∈ V as v = u+w

for some u ∈ U and w ∈W . Therefore

p(T )(v) = p(T )(u+ w)

= p(T )(u) + p(T )(w)

= (T − 3I)2(T − 2I)(u) + (T − 2I)(T − 3I)2(w)

= (T − 3I)2(0) + (T − 2I)(0) = 0.

This shows that p(T ) = 0. We need to show that p(x) is the minimal such polynomial.

Since mT |U (x) = x− 2, we know that 2 is the only eigenvalue of T |U , and in fact T |U = 2I

when restricted to U ! Therefore for any u ∈ U we have T (u) = T |U (u) = 2u; in particular,

this shows that 2 is an eigenvalue of T .

Similarly, mT |W (x) = (x− 3)2 implies that 3 is the only eigenvalue of T on W . This gives

three things: first, there exists a nonzero w ∈ W such that T |W (w) = 3w, so that 3 is

an eigenvalue of T . Second, kerT |W − 2I = {0} (since 2 is not an eigenvalue of T |W ), so

T |W − 2I is invertible as an operator on W . Third, there exists some w′ ∈ W so that

T (w′) 6= 3w′, since if T (w′) = 3w′ were true for all w′ ∈W then T |W would have minimal

polynomial x− 3.

Since 2 and 3 are eigenvalues of T , they must be roots of mT (x). Assume for a contradiction

that the degree of mT (x) is < 3. Since mT (x) has two roots, its degree must be ≥ 2. But

the only quadratic polynomial with 2 and 3 as roots is (x−2)(x−3). Therefore it suffices to

prove that (T − 2I)(T − 3I) 6= 0. Consider the w′ ∈W from above with T (w′) 6= 3w′. Let

w′′ = (T −3I)(w′) 6= 0. Since (T |W −2I) is invertible, we have (T −2I)(w) 6= 0 ⇐⇒ w 6= 0

for w ∈ W . Applying this to w′′, we conclude that (T − 2I)(T − 3I)(w′) 6= 0. Therefore

(x− 2)(x− 3) cannot be the minimal polynomial of T . Therefore the minimal polynomial

has degree 3, and therefore must be p(x) = (x− 2)(x− 3)2.
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b) Prove or give a counterexample to the following statement:

if the minimal polynomial of T |U is f(x) and the minimal polynomial of T |W is g(x), then

the minimal polynomial of T is f(x)g(x).

Counterexample. The statement is false. For a counter-example, let V = R2, and let U =

{(x, 0)} and W = {(0, y)}; we have seen before that V = U ⊕W .

Let T = I ∈ L(V ). Every subspace is invariant under I, so this fits the setup of the

question. We have T |U = I and T |V = I. Note that the minimal polynomial of the identity is

mI(x) = x− 1, no matter what vector space we work on. (Proof: plugging in I to x− 1 gives

I − I = 0. Since the minimal polynomial of I cannot be constant, x− 1 must be the minimal

polynomial.)

Therefore we have f(x) = mT |U (x) = x− 1 and g(x) = mT |W (x) = x− 1. However we also

have mT (x) = x− 1, showing that

mT (x) = (x− 1) 6= (x− 1)2 = f(x)g(x).

6



Question 5 (20 points). Let V = R2 and T ∈ L(V ). Prove that if T 3 = 0, then T 2 = 0.

Proof. [There are a number of different ways to prove this; here’s one that arises naturally by

splitting up the possibilities case-by-case.]

Since dimV = 2, we know that rankT = 0, 1, or 2; we consider these cases one at a

time. If rankT = 0 we have T = 0, which certainly implies T 2 = 0. If rankT = 2 we have

ImageT = V , so T is invertible. But then T 3 would be invertible (with inverse (T−1)3); this

contradicts the assumption that T 3 = 0, so we conclude that rankT 6= 2. It remains to consider

the case rankT = 1.

If dim ImageT = 0, the intersection ImageT ∩kerT either has dimension 0 or 1; we consider

each case separately.

In the first case ImageT ∩ kerT = {0}. Choose a nonzero v ∈ ImageT . Since v 6∈ kerT we

have T (v) 6= 0. But of course T (v) lies in ImageT . Since ImageT is 1-dimensional we must

have T (v) = λv for some nonzero λ. But then T 3(v) = λ3v 6= 0, contradicting the assumption

that T 3 = 0.

In the second case ImageT ∩ kerT = ImageT , which means that ImageT ⊂ kerT .

Therefore for any v ∈ V the element T (v) ∈ ImageT lies in kerT . This means precisely that

T 2(v) = 0 for all v ∈ V , or in other words T 2 = 0, as desired.
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