Math 113 - Winter 2013 - Prof. Church Midterm Solutions

Name: \qquad
Student ID: \qquad
Signature: \qquad

Question 1 (20 points). Let V be a finite-dimensional vector space, and let $T \in \mathcal{L}(V, W)$. Assume that v_{1}, \ldots, v_{n} is a basis for V. (For this question only, do not use the Rank-Nullity Theorem.)
a) Prove that T is injective if and only if $T\left(v_{1}\right), \ldots, T\left(v_{n}\right)$ are linearly independent in W.

Proof. (\Longrightarrow) Assume that T is injective. Consider a linear dependence $a_{1} T\left(v_{1}\right)+\cdots+$ $a_{n} T\left(v_{n}\right)=0$. If we set $v=a_{1} v_{1}+\cdots+a_{n} v_{n}$, we have $T(v)=T\left(a_{1} v_{1}+\cdots+a_{n} v_{n}\right)=$ $a_{1} T\left(v_{1}\right)+\cdots+a_{n} T\left(v_{n}\right)$, so our assumption says that $T(v)=0$. Since T is injective, this implies that $v=0$. But since v_{1}, \ldots, v_{n} is linearly independent (since it is a basis), the only way we can have $a_{1} v_{1}+\cdots+a_{n} v_{n}=0$ is if $a_{1}=0, \ldots, a_{n}=0$. This shows that $a_{1} T\left(v_{1}\right)+\cdots+a_{n} T\left(v_{n}\right)=0$ implies $a_{1}=0, \ldots, a_{n}=0$, which is the definition of linear independence.
(\Longleftarrow) Assume that $T\left(v_{1}\right), \ldots, T\left(v_{n}\right)$ are linearly independent. Consider $u \in \operatorname{ker} T$, so that $T(u)=0$. Since v_{1}, \ldots, v_{n} spans V (it is a basis), we can write $u=b_{1} v_{1}+\cdots+b_{n} v_{n}$. Therefore

$$
0=T(u)=T\left(b_{1} v_{1}+\cdots+b_{n} v_{n}\right)=b_{1} T\left(v_{1}\right)+\cdots+b_{n} T\left(v_{n}\right) .
$$

Since $T\left(v_{1}\right), \ldots, T\left(v_{n}\right)$ are linearly independent, this is only possible if $b_{1}=0, \ldots, b_{n}=0$. Therefore

$$
u=b_{1} v_{1}+\cdots+b_{n} v_{n}=0 \cdot v_{1}+\cdots+0 \cdot v_{n}=0 .
$$

Therefore $u \in \operatorname{ker} T \Longrightarrow u=0$, or in other words $\operatorname{ker} T=\{0\}$. By Proposition 3.2, this is equivalent to injectivity of T.
b) Prove that T is surjective if and only if $T\left(v_{1}\right), \ldots, T\left(v_{n}\right)$ spans W.

Proof. (\Longrightarrow) Assume that T is surjective. Therefore for any $w \in W$ there exists $v \in V$ such that $T(v)=w$. Since v_{1}, \ldots, v_{n} is a basis, we can write $v=a_{1} v_{1}+\cdots+a_{n} v_{n}$. Then

$$
w=T(v)=T\left(a_{1} v_{1}+\cdots+a_{n} v_{n}\right)=a_{1} T\left(v_{1}\right)+\cdots+a_{n} T\left(v_{n}\right) .
$$

This shows that $w \in \operatorname{span}\left(T\left(v_{1}\right), \ldots, T\left(v_{n}\right)\right)$. Since this holds for any $w \in W$, we conclude that $\operatorname{span}\left(T\left(v_{1}\right), \ldots, T\left(v_{n}\right)\right)=W$ as desired.
(\Longleftarrow) Assume that $T\left(v_{1}\right), \ldots, T\left(v_{n}\right)$ spans W. Then for any $w \in W$ there exist a_{1}, \ldots, a_{n} such that $w=a_{1} T\left(v_{1}\right)+\cdots+a_{n} T\left(v_{n}\right)$. Then if we set $v=a_{1} v_{1}+\cdots+a_{n} v_{n}$ we have $T(v)=w$. Therefore every $w \in W$ is in the image of T, and T is surjective.

Question 2 (20 points). We consider a linear transformation $T \in \mathcal{L}\left(P_{\leq 2}(\mathbb{R}), P_{\leq 3}(\mathbb{R})\right)$. Assume that we are given partial data about T :

$$
\begin{aligned}
T\left(x^{2}+1\right) & =x^{2}-x \\
T(1) & =2 x+1
\end{aligned}
$$

Given this partial data, answer the following questions. Justify your answers.
a) Could T be injective?

Answer. Yes. For example, consider the transformation T defined by the formula

$$
T\left(a x^{2}+b x+c\right)=a x^{2}+(b-3 a+2 c) x+(c-a)
$$

We check: $T\left(x^{2}+1\right)=x^{2}+(-3+2) x+(1-1)=x^{2}-x$ and $T(1)=0+2 x+1=2 x+1$, so this fits the partial data. This map is injective: if $a x^{2}+b x+c \in \operatorname{ker} T$, we must have

$$
a x^{2}+(b-3 a+2 c) x+(c-a) x=0 \quad \Longrightarrow \quad\left\{\begin{array}{l}
a=0 \\
b-3 a+2 c=0 \\
c-a=0
\end{array}\right.
$$

The first equation implies $a=0$; given this, the third becomes $c=0$; given these, the second becomes $b=0$. Therefore $\operatorname{ker} T=\{0\}$ and T is injective.
b) Could T be surjective?

Answer. No. We know that $\operatorname{dim} P_{\leq 2}(\mathbb{R})=3$ and $\operatorname{dim} P_{\leq 3}(\mathbb{R})=4$. However Corollary 3.6 states that $T: V \rightarrow W$ cannot be surjective if $\operatorname{dim} V<\operatorname{dim} W$.
c) Can we determine $T\left(x^{2}+x+1\right)$ from the given data?

Answer. No. For the T given in a) we compute $T\left(x^{2}+x+1\right)=x^{2}$. However we could also define

$$
T\left(a x^{2}+b x+c\right)=b x^{3}+a x^{2}+(-3 a+2 c) x+(c-a),
$$

(again we can check that $T\left(x^{2}+1\right)=x^{2}-x$ and $T(1)=2 x+1$), in which case $T\left(x^{2}+x+1\right)=$ $x^{3}+x^{2}-x$. Therefore $T\left(x^{2}+x+1\right)$ cannot be definitively determined from the given data.
d) Can we determine whether $x^{2}+x+1 \in \operatorname{Image}(T)$ from the given data?

Answer. Yes, and it is indeed in the image. We have $T\left(x^{2}+2\right)=T\left(x^{2}+1\right)+T(1)=$ $\left(x^{2}-x\right)+(2 x+1)=x^{2}+x+1$, so $x^{2}+x+1 \in \operatorname{Image}(T)$.

Question 3 (20 points). Let V be a finite-dimensional vector space, and let $T \in \mathcal{L}(V)$. Assume that

$$
\operatorname{Image}(T) \neq \operatorname{Image}\left(T^{2}\right)
$$

a) Prove that T is not diagonalizable.

Proof. If T is diagonalizable, then there exists a basis v_{1}, \ldots, v_{n} for V such that $T\left(v_{i}\right)=\lambda_{i} v_{i}$ for all $i=1, \ldots, n$. For each i, let 1

$$
c_{i}= \begin{cases}\frac{1}{\lambda_{i}} & \text { if } \lambda_{i} \neq 0 \\ 0 & \text { if } \lambda_{i}=0\end{cases}
$$

Note that in either case we have $c_{i} \cdot \lambda_{i}^{2}=\lambda_{i}$ (in the first case $\frac{1}{\lambda_{i}} \lambda_{i}^{2}=\lambda_{i}$, in the second case $0 \cdot 0^{2}=0$).

We know that Image $\left(T^{2}\right) \subset \operatorname{Image}(T)$ (since Image $T S \subset$ Image T for any $S \in \mathcal{L}(V)$, including $S=T$). We will prove that Image $(T) \subset \operatorname{Image}\left(T^{2}\right)$ (for a contradiction). Assume that $w \in \operatorname{Image}(T)$, so we can write $w=T(v)$ for some $v \in V$. Since v_{1}, \ldots, v_{n} is a basis for V, we can write $v=a_{1} v_{1}+\cdots+a_{n} v_{n}$. We can then calculate

$$
\begin{aligned}
w=T(v) & =T\left(a_{1} v_{1}+\cdots+a_{n} v_{n}\right) \\
& =a_{1} T\left(v_{1}\right)+\cdots+a_{n} T\left(v_{n}\right) \\
& =a_{1} \lambda_{1} v_{1}+\cdots+a_{n} \lambda_{n} v_{n}
\end{aligned}
$$

Now define

$$
u:=a_{1} c_{1} v_{1}+\cdots+a_{n} c_{n} v_{n}
$$

I claim that $T^{2}(u)=w$. Indeed,

$$
\begin{aligned}
T^{2}(u) & =T^{2}\left(a_{1} c_{1} v_{1}+\cdots+a_{n} c_{1} v_{n}\right) \\
& =a_{1} c_{1} T^{2}\left(v_{1}\right)+\cdots+a_{n} c_{n} T^{2}\left(v_{n}\right) \\
& =a_{1} c_{1} \lambda_{1}^{2} v_{1}+\cdots+a_{n} c_{n} \lambda_{n}^{2} v_{n} \\
& =a_{1} \lambda_{1} v_{1}+\cdots+a_{n} \lambda_{n} v_{n} \\
& =w
\end{aligned}
$$

Since $w=T^{2}(u)$, we conclude that $w \in \operatorname{Image}\left(T^{2}\right)$. Since w was an arbitrary element of Image T, this shows that Image $(T) \subset \operatorname{Image}\left(T^{2}\right)$. Combined with Image $\left(T^{2}\right) \subset$ Image (T) this implies that Image $(T)=$ Image $\left(T^{2}\right)$, contradicting the hypothesis of the question. Therefore T must not be diagonalizable.

[^0]b) Which of the following is true?
(I) T must be invertible.
(II) T must be non-invertible.
(III) T could be invertible or non-invertible.

Prove your answer.
Answer. (II) is correct. If T is invertible, then T is surjective, so $\operatorname{Image}(T)=V$. Separately, if T is invertible, then so is T^{2}. (Its inverse is given by $\left(T^{-1}\right)^{2}$, as we can check by

$$
\left.T^{2}\left(T^{-1}\right)^{2}=T \cdot T \cdot T^{-1} \cdot T^{-1}=T \cdot I \cdot T^{-1}=T \cdot T^{-1}=I \cdot\right)
$$

But if T^{2} is invertible, then it is surjective, and so Image $\left(T^{2}\right)=V$ as well. This contradicts the hypothesis that Image $(T) \neq \operatorname{Image}\left(T^{2}\right)$.

Question 4 (20 points). Let V be a finite-dimensional vector space over \mathbb{C}, and let $T \in \mathcal{L}(V)$. Let U and W be subspaces such that $V=U \oplus W$. Assume that U and W are invariant under T.
(Recall that when U is an invariant subspace, $\left.T\right|_{U}: U \rightarrow U$ is the restriction of T to U.)
a) Prove that:
if the minimal polynomial of $\left.T\right|_{U}$ is $x-2$ and the minimal polynomial of $\left.T\right|_{W}$ is $(x-3)^{2}$, then the minimal polynomial of T is $(x-2)(x-3)^{2}$.

Proof. Let $p(x)=(x-2)(x-3)^{2}$. We first check that $p(T)=0$ on all of V. Since $m_{\left.T\right|_{U}}(x)=x-2$ we know that

$$
(T-2 I)(u)=\left(\left.T\right|_{U}-2 I\right)(u)=0
$$

for all $u \in U$, and similarly since $m_{\left.T\right|_{W}}(x)=(x-3)^{2}$ we know that $(T-3 I)^{2}(w)=$ $\left(\left.T\right|_{W}-3 I\right)^{2}(w)=0$ for all $w \in W$. Since $V=U \oplus W$, we can write any $v \in V$ as $v=u+w$ for some $u \in U$ and $w \in W$. Therefore

$$
\begin{aligned}
p(T)(v) & =p(T)(u+w) \\
& =p(T)(u)+p(T)(w) \\
& =(T-3 I)^{2}(T-2 I)(u)+(T-2 I)(T-3 I)^{2}(w) \\
& =(T-3 I)^{2}(0)+(T-2 I)(0)=0 .
\end{aligned}
$$

This shows that $p(T)=0$. We need to show that $p(x)$ is the minimal such polynomial. Since $m_{\left.T\right|_{U}}(x)=x-2$, we know that 2 is the only eigenvalue of $\left.T\right|_{U}$, and in fact $\left.T\right|_{U}=2 I$ when restricted to U ! Therefore for any $u \in U$ we have $T(u)=\left.T\right|_{U}(u)=2 u$; in particular, this shows that 2 is an eigenvalue of T.
Similarly, $m_{\left.T\right|_{W}}(x)=(x-3)^{2}$ implies that 3 is the only eigenvalue of T on W. This gives three things: first, there exists a nonzero $w \in W$ such that $\left.T\right|_{W}(w)=3 w$, so that 3 is an eigenvalue of T. Second, $\left.\operatorname{ker} T\right|_{W}-2 I=\{0\}$ (since 2 is not an eigenvalue of $\left.T\right|_{W}$), so $\left.T\right|_{W}-2 I$ is invertible as an operator on W. Third, there exists some $w^{\prime} \in W$ so that $T\left(w^{\prime}\right) \neq 3 w^{\prime}$, since if $T\left(w^{\prime}\right)=3 w^{\prime}$ were true for all $w^{\prime} \in W$ then $\left.T\right|_{W}$ would have minimal polynomial $x-3$.

Since 2 and 3 are eigenvalues of T, they must be roots of $m_{T}(x)$. Assume for a contradiction that the degree of $m_{T}(x)$ is <3. Since $m_{T}(x)$ has two roots, its degree must be ≥ 2. But the only quadratic polynomial with 2 and 3 as roots is $(x-2)(x-3)$. Therefore it suffices to prove that $(T-2 I)(T-3 I) \neq 0$. Consider the $w^{\prime} \in W$ from above with $T\left(w^{\prime}\right) \neq 3 w^{\prime}$. Let $w^{\prime \prime}=(T-3 I)\left(w^{\prime}\right) \neq 0$. Since $\left(\left.T\right|_{W}-2 I\right)$ is invertible, we have $(T-2 I)(w) \neq 0 \Longleftrightarrow w \neq 0$ for $w \in W$. Applying this to $w^{\prime \prime}$, we conclude that $(T-2 I)(T-3 I)\left(w^{\prime}\right) \neq 0$. Therefore $(x-2)(x-3)$ cannot be the minimal polynomial of T. Therefore the minimal polynomial has degree 3 , and therefore must be $p(x)=(x-2)(x-3)^{2}$.
b) Prove or give a counterexample to the following statement:
if the minimal polynomial of $\left.T\right|_{U}$ is $f(x)$ and the minimal polynomial of $\left.T\right|_{W}$ is $g(x)$, then the minimal polynomial of T is $f(x) g(x)$.

Counterexample. The statement is false. For a counter-example, let $V=\mathbb{R}^{2}$, and let $U=$ $\{(x, 0)\}$ and $W=\{(0, y)\}$; we have seen before that $V=U \oplus W$.

Let $T=I \in \mathcal{L}(V)$. Every subspace is invariant under I, so this fits the setup of the question. We have $\left.T\right|_{U}=I$ and $\left.T\right|_{V}=I$. Note that the minimal polynomial of the identity is $m_{I}(x)=x-1$, no matter what vector space we work on. (Proof: plugging in I to $x-1$ gives $I-I=0$. Since the minimal polynomial of I cannot be constant, $x-1$ must be the minimal polynomial.)

Therefore we have $f(x)=m_{\left.T\right|_{U}}(x)=x-1$ and $g(x)=m_{\left.T\right|_{W}}(x)=x-1$. However we also have $m_{T}(x)=x-1$, showing that

$$
m_{T}(x)=(x-1) \neq(x-1)^{2}=f(x) g(x)
$$

Question 5 (20 points). Let $V=\mathbb{R}^{2}$ and $T \in \mathcal{L}(V)$. Prove that if $T^{3}=0$, then $T^{2}=0$.

Proof. [There are a number of different ways to prove this; here's one that arises naturally by splitting up the possibilities case-by-case.]

Since $\operatorname{dim} V=2$, we know that $\operatorname{rank} T=0,1$, or 2 ; we consider these cases one at a time. If $\operatorname{rank} T=0$ we have $T=0$, which certainly implies $T^{2}=0$. If $\operatorname{rank} T=2$ we have Image $T=V$, so T is invertible. But then T^{3} would be invertible (with inverse $\left.\left(T^{-1}\right)^{3}\right)$; this contradicts the assumption that $T^{3}=0$, so we conclude that $\operatorname{rank} T \neq 2$. It remains to consider the case $\operatorname{rank} T=1$.

If $\operatorname{dim} \operatorname{Image} T=0$, the intersection Image $T \cap \operatorname{ker} T$ either has dimension 0 or 1 ; we consider each case separately.

In the first case Image $T \cap \operatorname{ker} T=\{0\}$. Choose a nonzero $v \in \operatorname{Image} T$. Since $v \notin \operatorname{ker} T$ we have $T(v) \neq 0$. But of course $T(v)$ lies in Image T. Since Image T is 1 -dimensional we must have $T(v)=\lambda v$ for some nonzero λ. But then $T^{3}(v)=\lambda^{3} v \neq 0$, contradicting the assumption that $T^{3}=0$.

In the second case Image $T \cap \operatorname{ker} T=$ Image T, which means that Image $T \subset \operatorname{ker} T$. Therefore for any $v \in V$ the element $T(v) \in \operatorname{Image} T$ lies in $\operatorname{ker} T$. This means precisely that $T^{2}(v)=0$ for all $v \in V$, or in other words $T^{2}=0$, as desired.

[^0]: ${ }^{1}$ Many students forgot to consider the case $\lambda_{i}=0$. Since part b tells us that T must have 0 as an eigenvalue, this is an important case!

