Math 113 - Winter 2013 - Prof. Church Midterm Exam 2/11/2013

Name: \qquad

Student ID: \qquad

Signature: \qquad

Question 1 (20 points). Let V be a finite-dimensional vector space, and let $T \in \mathcal{L}(V, W)$. Assume that v_{1}, \ldots, v_{n} is a basis for V. (For this question only, do not use the Rank-Nullity Theorem.)
a) Prove that T is injective if and only if $T\left(v_{1}\right), \ldots, T\left(v_{n}\right)$ are linearly independent in W.
b) Prove that T is surjective if and only if $T\left(v_{1}\right), \ldots, T\left(v_{n}\right)$ spans W.

Question 2 (20 points). We consider a linear transformation $T \in \mathcal{L}\left(P_{\leq 2}(\mathbb{R}), P_{\leq 3}(\mathbb{R})\right)$. Assume that we are given partial data about T :

$$
\begin{aligned}
T\left(x^{2}+1\right) & =x^{2}-x \\
T(1) & =2 x+1
\end{aligned}
$$

Given this partial data, answer the following questions. Justify your answers.
a) Could T be injective?
b) Could T be surjective?
c) Can we determine $T\left(x^{2}+x+1\right)$ from the given data?
d) Can we determine whether $x^{2}+x+1 \in \operatorname{Image}(T)$ from the given data?

Question 3 (20 points). Let V be a finite-dimensional vector space, and let $T \in \mathcal{L}(V)$. Assume that

$$
\operatorname{Image}(T) \neq \operatorname{Image}\left(T^{2}\right)
$$

a) Prove that T is not diagonalizable.
b) Which of the following is true?
(I) T must be invertible.
(II) T must be non-invertible.
(III) T could be invertible or non-invertible.

Prove your answer.

Question 4 (20 points). Let V be a finite-dimensional vector space over \mathbb{C}, and let $T \in \mathcal{L}(V)$. Let U and W be subspaces such that $V=U \oplus W$. Assume that U and W are invariant under T.
(Recall that when U is an invariant subspace, $\left.T\right|_{U}: U \rightarrow U$ is the restriction of T to U.)
a) Prove that:
if the minimal polynomial of $\left.T\right|_{U}$ is $x-2$ and the minimal polynomial of $\left.T\right|_{W}$ is $(x-3)^{2}$, then the minimal polynomial of T is $(x-2)(x-3)^{2}$.
b) Prove or give a counterexample to the following statement:
if the minimal polynomial of $\left.T\right|_{U}$ is $f(x)$ and the minimal polynomial of $\left.T\right|_{W}$ is $g(x)$, then the minimal polynomial of T is $f(x) g(x)$.

Question 5 (20 points). Let $V=\mathbb{R}^{2}$ and $T \in \mathcal{L}(V)$. Prove that if $T^{3}=0$, then $T^{2}=0$.
(This is a special case of the fact I mentioned in class that the degree of the minimal polynomial is $\leq \operatorname{dim} V$. However, we haven't gotten to that yet, so you can't quote me on that!)

