
Math 113 – Fall 2015 – Prof. Church
Midterm Exam 10/26/2015

Name:

Student ID:

Signature:

This exam is closed-book and closed-notes. In your proofs you may use any theorem from class

or from the sections of the book that are covered on the midterm (not including exercises or

homework questions). You do not need to cite theorems by number; just give the statement of

the theorem you wish to cite. When giving counterexamples, you may describe linear maps or

operators either by a formula or by a matrix.

There are 5 questions worth 100 points total on this exam, plus a 10-point bonus question;

you should finish all the other questions before attempting the bonus question.

Question 1 (20 points). Let T ∈ L(V ) be an operator on the vector space V .

(a) State clearly and precisely the definition of:

“v is an eigenvector of T with eigenvalue λ.”

Solution. “v is a nonzero vector in V , and T (v) = λv.”
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We continue to assume that T ∈ L(V ) is an operator on the vector space V .

Let v1 be an eigenvector of T with eigenvalue λ1 ∈ F, and

let v2 be an eigenvector of T with eigenvalue λ2 ∈ F.

(b) Prove that if λ1 6= λ2, then v1 and v2 are linearly independent.

(On this question only, you cannot quote the theorem that says this.)

Solution. The definition of linear independence is that c1v1 + c2v2 = 0 implies

c1 = 0 and c2 = 0.

Therefore assume that c1 ∈ F and c2 ∈ F satisfy

c1v1 + c2v2 = 0. (∗)

Our goal is to prove that c1 = 0 and c2 = 0.

Applying T to the left side of (∗) yields

T (c1v1 + c2v2) = c1T (v1) + c2T (v2)

=c1λ1v1 + c2λ2v2

while applying T to the right side of (∗) yields T (0) = 0. Therefore

c1λ1v1 + c2λ2v2 = 0. (∗∗)

Now subtract λ1 times (∗) from (∗∗) to obtain

(c1λ1v1 + c2λ2v2)− λ1(c1v1 + c2v2) = 0

(c1λ1 − c1λ1)v1 + (c2λ2 − c2λ1)v2 = 0

c2(λ2 − λ1)v2 = 0

Since λ1 6= λ2 by assumption, we know that (λ2 − λ1) 6= 0, so we can multiply by
1

λ2−λ1 to obtain

c2v2 = 0

We know that v2 6= 0 since v2 is an eigenvector, so we must have c2 = 0. Substituting

c2 = 0 into (∗) yields

c1v1 = 0.

We know that v1 6= 0 since v1 is an eigenvector, so we must have c1 = 0.

We conclude that (∗) implies that c1 = 0 and c2 = 0. Therefore by definition of

linear independence, this proves that v1 and v2 are linearly independent.
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We continue to assume that T ∈ L(V ) is an operator on the vector space V ,

v1 is an eigenvector of T with eigenvalue λ1 ∈ F, and

v2 is an eigenvector of T with eigenvalue λ2 ∈ F.

(c) Give two examples showing that if λ1 = λ2,

then v1 and v2 might be either linearly independent or linearly dependent.

(After specifying the operator T , you can just indicate the vectors v1 and v2;

as long as they really are eigenvectors, you do not have to prove that they are.)

Solution. Let V be any 2-dimensional vector space, with basis w1, w2 and let T = I.

Note that any vector v ∈ V satisfies Tv = v = 1v; therefore any nonzero vector v ∈ V
is an eigenvector of T with eigenvalue 1.

First example: set v1 = w1 and v2 = w2.

Second example: set v1 = w1 and v2 = 77w1.

(The vectors w1 and w2 are nonzero, because they are part of a basis; 77w1 is nonzero

as well, because it is a nonzero multiple of a nonzero vector. The vectors w1 and w2

are linearly independent because w1, w2 is a basis; the vectors w1 and 77w1 are linearly

dependent because 77v1 − v2 = 0.(
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Question 2 (20 points). Let V be a finite-dimensional vector space with dimV = n ≥ 1,

and let T ∈ L(V ) and S ∈ L(V ) be operators on V .

Assume that ST = 0.

Prove that there exists a nonzero vector v 6= 0 ∈ V with TS(v) = 0.

Solution. Proof #1: We consider two cases: either rangeT = {0} or rangeT 6= {0}.
First, assume rangeT = {0}. In this case we may choose any nonzero vector v 6= 0,

and we find TS(v) = T (Sv) ∈ rangeT . Since rangeT = {0}, this implies TS(v) = 0, as

desired.

Now assume that rangeT 6= {0}. Choose a nonzero v 6= 0 ∈ rangeT . By definition,

there exists some u ∈ V with T (u) = v (this is what it means that v ∈ rangeT ). Then

we can compute TS(v) = TS(Tu) = T (ST (u)). Since we have assumed ST = 0, we

know that ST (u) = 0. Therefore TS(v) = T (ST (u)) = T (0) = 0, as desired.

Proof #2: For any operators S and T , we know that nullS ⊂ nullTS and rangeTS ⊂
rangeT . (Proof not necessary, but if you wanted to give it: v ∈ nullS ⇐⇒ S(v) =

0 =⇒ TS(v) = 0 ⇐⇒ v ∈ nullTS, and w ∈ rangeTS ⇐⇒ w = TS(v) =⇒ w =

T (u) ⇐⇒ w ∈ rangeT , taking u = S(v) in the last implication.)

Moreover, the assumption that ST = 0 means precisely that rangeT ⊂ nullS. (Proof

not necessary, but if you wanted to give it: w ∈ rangeT ⇐⇒ w = T (u) =⇒ S(w) =

ST (u) =⇒ S(w) = 0 ⇐⇒ w ∈ nullS, where we used ST = 0 in the last implication.)

Together, these say that

rangeTS ⊂ rangeT ⊂ nullS ⊂ nullTS. (?)

Now assume for a contradiction that there is no nonzero v 6= 0 ∈ V with TS(v) = 0.

In other words, nullTS = {0}. By (?), this means that rangeTS ⊂ nullTS = {0}, so

rangeTS = {0}. The Fundamental Theorem of Linear Maps then tells us that

dimV = dim rangeTS + dim nullTS = 0 + 0 = 0.

This contradicts the assumption that V has dimension n ≥ 1. Therefore there must

exist a nonzero v ∈ V with TS(v) = 0.

[Many other proofs are possible as well.]
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Question 3 (20 points). Let V , W , and U be finite-dimensional vector spaces.

Let T : V → W be a linear map from V to W , and

let S : W → U be a linear map from W to U .

(a) Prove that rangeST ⊆ rangeS.

Solution. (a) Assume that u ∈ U lies in rangeST . By definition, this means that there

exists v ∈ V such that u = ST (v). Choose such a v ∈ V , and let w = T (v). Then

S(w) = S(T (v)) = ST (v) = u. This shows that u can be written as S(w) for this

w ∈ W , so u ∈ rangeS.

We have proved that every u ∈ rangeST lies in rangeS, so rangeST ⊆ rangeS.
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We continue to assume that V , W , and U are finite-dimensional vector spaces,

T : V → W is a linear map from V to W , and

S : W → U is a linear map from W to U .

(b) Assume that rangeST = rangeS. Which of the following is true?

(I) T must be surjective.

(II) T must be non-surjective.

(III) T could be surjective or non-surjective.

Prove your answer.

Solution. (b) The correct answer is (III): T could be surjective or non-surjective.

First, an example where T is surjective:

Let V = W = U = F and let T = I and S = I both be the identity map. Then

S = I and ST = I ◦ I = I, so rangeS = F and rangeST = F. The identity map

T = I : F→ F is surjective.

(We could have taken any vector space here, as long as T = I and S = I.)

Second, an example where T is non-surjective:

Let V = W = U = F and let T = 0 and S = 0 both be the zero map. Then S = 0

and ST = 0 ◦ 0 = 0, so rangeS = {0} and rangeST = {0}. Since rangeT = {0} 6= F,

the map T is not surjective.

(We could have taken any nonzero vector space here, as long as T = 0 and S = 0.)

[Of course, there are many other examples we could choose; these are just the simplest.]
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Question 4 (20 points). Let V be a finite-dimensional vector space,

and let T ∈ L(V ) be an operator on V .

Is the following statement true or not?

If T 3 = T 2, then V = nullT ⊕ null(T − I). (∗)

Prove the statement (∗) or give a counterexample.

Solution. No, it is not true. For example, let V = R2 and let T be the operator

T (x, y) = (y, 0)

with matrix

[
0 1

0 0

]
. Then T 2 = 0, so T 3 = 0.

However nullT = {(x, 0) |x ∈ R} is 1-dimensional, and null(T − I) = {0}. Since

dim(U ⊕W ) = dimU + dimW , this implies

dim(nullT ⊕ null(T − I)) = dim nullT + dim null(T − I) = 0 + 1 = 1 6= 2 = dimV.

(To obtain this description of nullT : if v = (x, y) lies in nullT , then Tv = (0, 0).

Since Tv = (y, 0), this implies that y = 0. Conversely, if v = (x, 0), then Tv = (0, 0)

and v ∈ nullT .

Similarly, to obtain this description of null(T−I), note that (T−I)(x, y) = (y−x,−y).

Therefore if v = (x, y) is in null(T − I), we have x = y − x and y = −y. The latter

equation implies y = 0; substituting into the first yields x = −x, so x = 0. Therefore

v = (0, 0).)
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Question 5 (20 points). Let V be a finite-dimensional vector space with dimV = n.

Let S ∈ L(V ) be an operator on V with n distinct eigenvalues, and

let T ∈ L(V ) be another operator on V .

Prove that if ST = TS, then T is diagonalizable.

(Hint: prove that an eigenbasis for S is also an eigenbasis for T .)

Solution. We first prove:

Lemma 1: If v is an eigenvector for S with eigenvalue λ, then Tv is also an eigenvector

for S with eigenvalue λ (or Tv = 0).

Proof of Lemma 1. The proof uses only the assumption that ST = TS. Set w = Tv;

then

S(w) = S(Tv) = ST (v) = TS(v) = T (λv) = λTv = λw.

This shows that w (that is, Tv) satisfies the eigenvector equation Sw = λw; therefore if

w 6= 0, it is an eigenvector of S with eigenvalue λ.

We now turn to the assumption that S has n distinct eigenvalues. Let λ1, . . . , λn

be the n eigenvalues of S, and let v1, . . . , vn be the corresponding eigenvectors (so

S(vk) = λkvk). The vectors v1, . . . , vn are linearly independent, since eigenvectors whose

eigenvalues are distinct are linearly independent. Since dimV = n, these n vectors form

a basis for V . We next prove:

Lemma 2: If u ∈ V satisfies S(u) = λku, then u = cvk for some c ∈ F.

Proof of Lemma 2. Since v1, . . . , vn is a basis of V , any u ∈ V can be written as

u = c1v1 + · · · cnvn.

We can compute S(u) directly as

S(u) = S(c1v1 + · · · cnvn) = c1S(v1) + · · ·+ cnS(vn) = c1λ1v1 + · · · cnλnvn.

If we also assume that S(u) = λku, then

S(u) = λk(c1v1 + · · · cnvn) = c1λkv1 + · · · cnλkvn.

Subtracting the latter equation from the former gives

S(u)− S(u) = (c1λ1v1 + · · · cnλnvn)− (c1λkv1 + · · · cnλkvn)

0 = c1(λ1 − λk)v1 + · · ·+ ck(λk − λk)ck + · · ·+ cn(λn − λk)vn.
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Since v1, . . . , vn is a basis, we know that there is only one way to write 0 as a linear

combination of these basis vectors (namely with all coefficients 0). So we conclude that

c1(λ1 − λk) = 0, . . . , ck(λk − λk) = 0, . . . , cn(λn − λk) = 0.

For each i other than k, we know that λi − λk 6= 0 (since λi and λk are distinct), so we

conclude that ci = 0 for all i other than k. This shows that u = 0v1+· · ·+ckvk+· · ·+0vn =

ckvk, as desired. This completes the proof of Lemma 2.

We now prove the claim that T is diagonalizable by showing that v1, . . . , vn is an

eigenbasis for T . Consider a single vector vk from this basis, which is an eigenvector

of S with eigenvalue vk. By Lemma 1, we know that Tvk is an eigenvector of S with

eigenvalue λk, or else Tv = 0; in either case, it satisfies S(Tvk) = λkTvk. Therefore by

Lemma 2, we see that Tvk = cvk for some c ∈ F. In other words, vk is an eigenvector of

T (since it is nonzero). Therefore v1, . . . , vn is an eigenbasis for T , so T is diagonalizable.
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Question 6 (Bonus question, 10 points). Let V be a finite-dimensional vector space

with dimV = n, and let S ∈ L(V ) and T ∈ L(V ) be operators on V satisfying ST = TS.

Assume that S and T are diagonalizable. Prove that there exists a basis v1, . . . , vn for V

which is simultaneously an eigenbasis for S and also an eigenbasis for T .

Solution. First, a lemma. For any subspace U invariant under T , let R ∈ L(U) be the

restriction R = T |U .

Lemma 3: The minimal polynomial pR(x) of R divides the minimal polynomial

pT (x) of T .

Proof of Lemma 3. By definition Ru = Tu for all u ∈ U (this is the definition of

the restriction R = T |U), from which it follows that R2u = T 2u, and in general

f(R)u = f(T )u for any polynomial f(x). Applying this to the polynomial pT (x), we

find that pT (R)u = pT (T )u for all u ∈ U .

However pT (T ) = 0 ∈ L(V ) by definition, so for all v ∈ V (not just those in U), we

have pT (T )v = 0. Therefore the previous paragraph implies that pT (R)u = 0 for all

u ∈ U ; in other words, pT (R) = 0 ∈ L(U).

Whenver a polynomial f(x) satisfies f(R) = 0 ∈ L(U), that polynomial is divisible

by the minimal polynomial of R (this is Prop 8.46, or you could prove it yourself; there

are other approaches to this problem too). Therefore pT (x) is divisible by the minimal

polynomial pR(x) of R.

Lemma 4: For each eigenvalue λ of S, we can choose a basis for E(S, λ) consisting

of eigenvectors for T .

Proof of Lemma 4. Since T is diagonalizable, we know that the minimal polynomial

pT (x) has no repeated roots.

Fix an eigenvalue λ of S, and let U = E(S, λ). What Lemma 1 from the solution of

Question 5 says is that under the assumption that ST = TS, the eigenspaces E(S, λ) of

S are invariant subspaces under T . Therefore we can let R ∈ L(U) be the restriction

R = T |U .

By Lemma 3, the minimal polynomial of R divides pT (x); therefore it cannot have any

repeated roots (it has even fewer roots than pT (x), where would you get a repeated root

from?). Since the minimal polynomial of R has no repeated roots, R is diagonalizable.

Therefore we may choose a basis of U = E(S, λ) consisting of eigenvectors for T .

Let λ1, . . . , λk be the eigenvalues of S. Recall that the sum of the eigenspaces

E(S, λ1) + · · ·+ E(S, λk) is a direct sum E(S, λ1)⊕ · · · ⊕ E(S, λk).
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If we concatenate the basis of E(S, λ1) from Lemma 4, with the basis of E(S, λ2)

from Lemma 4, ...., with the basis of E(S, λk) from Lemma 4, what we obtain is a basis

for E(S, λ1) + · · · + E(S, λk). Each vector in this basis is an eigenvector for S (since

each one is contained in E(S, λi) for some i) and is also an eigenvector for T (since we

chose them that way in Lemma 4).

Finally, we use the assumption that S is diagonalizable, which we have not used yet.

Since S is diagonalizable, we know that V = E(S, λ1) + · · ·+ E(S, λk). Therefore the

basis for E(S, λ1) + · · ·+ E(S, λk) we obtained above is the desired basis for V .

Total 1a 1b 1c 2 3a 3b 4 5 Bonus
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