Math 113 Homework 9 Solutions

Solutions by Guanyang Wang, with edits by Tom Church.
Question 1. Let $V=\mathbb{R}^{2}$, and let $T \in \mathcal{L}(V)$ be an operator on V. Assume that $v \in V$ and $w \in V$ are two non-zero vectors satisfying

$$
T(v)=2 v \text { and } T(w)=-w
$$

Compute the determinant $\operatorname{det}\left(T^{4}+T\right)$.
Answer. Notice that $\left(T^{4}+T\right)(w)=T^{4} w+T w=w-w=0$. Therefore $T^{4}+T$ is not injective, and thus not invertible. Using Proposition 3.3, we know that $\operatorname{det}\left(T^{4}+T\right)=0$.

Question 2. On HW 5 , you found the minimal polynomial of the operator $T \in$ $\mathcal{L}\left(\mathbb{R}^{4}\right)$ with matrix

$$
\left(\begin{array}{llll}
2 & 0 & 0 & 0 \\
0 & 3 & 0 & 1 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & 3
\end{array}\right)
$$

Find the characteristic polynomial of T.
Answer. Recall that the characteristic polynomial $\chi_{T}(x)$ is the function defined by

$$
\chi_{T}(x)=\operatorname{det}(x I-T)
$$

The operator $x I-T \in \mathcal{L}\left(\mathbb{R}^{4}\right)$ has matrix

$$
\left(\begin{array}{cccc}
x-2 & 0 & 0 & 0 \\
0 & x-3 & 0 & -1 \\
0 & 0 & x-3 & 0 \\
0 & 0 & 0 & x-3
\end{array}\right)
$$

which is upper-triangular. By proposition 3.7, the determinant of an upper-triangular operator is product of diagonal entries, so $\chi_{T}(x)=\operatorname{det}(x I-T)=(x-2)(x-3)^{3}$.

Question 3. Let V be an n-dimensional vector space, and let $T \in \mathcal{L}(V)$ be an operator on V. Let $\chi_{T}(x)$ be the characteristic polynomial of T. Which of the following implications is true?
I. If $\chi_{T}(x)$ has n distinct roots, then T is diagonalizable.
II. If T is diagonalizable, then $\chi_{T}(x)$ has n distinct roots.
III. Both I and II are true.
IV. Neither I nor II is true.

Prove that your answer is correct, by either proving or giving a counterexample for I, and either proving or giving a counterexample for II.

Proof. Statement I is correct. It follows from Proposition 4.2 that the operator T has n distinct eigenvalues, then from Theorem 5.44 in our textbook, we know that T is diagonalizable.

Statement II is false. Now suppose $n=2, \mathbb{F}=\mathbb{R}$ and let $T=I$, the identity operator on \mathbb{R}^{2}. Then T is diagonalizable. Meanwhile the operator $x I-T=$ $x I-I=(x-1) I \in \mathcal{L}\left(\mathbb{R}^{2}\right)$ has matrix

$$
\left(\begin{array}{cc}
x-1 & 0 \\
0 & x-1
\end{array}\right)
$$

So we have $\chi_{T}(x)=\operatorname{det}(x I-T)=\operatorname{det}(x I-I)=\operatorname{det}((x-1) I)=(x-1)^{2}$, which has only one root 1 . Therefore this is a counterexample of statement II.

Question 4. Let V be a finite-dimensional complex inner product space, and let $T: V \rightarrow V$ be an operator on V. Prove that if T is an isometry, then $|\operatorname{det} T|=1$.

Proof. We know from Thm 7.43 that there is an orthonormal basis of V consisting of eigenvectors of T whose corresponding eigenvalues all have absolute value 1 . Let e_{1}, \ldots, e_{n} be the eigenbasis and $\lambda_{1}, \ldots, \lambda_{n}$ be the corresponding eigenvalues. Then we just need to calculate $T\left(e_{1}\right) \wedge \cdots \wedge T\left(e_{n}\right)$

$$
T\left(e_{1}\right) \wedge \cdots \wedge T\left(e_{n}\right)=\lambda_{1} e_{1} \wedge \cdots \wedge \lambda_{n} e_{n}=\lambda_{1} \cdots \lambda_{n} \cdot e_{1} \wedge \cdots \wedge e_{n}
$$

Therefore $|\operatorname{det} T|=\left|\lambda_{1} \cdots \lambda_{n}\right|=1$ since $\left|\lambda_{i}\right|=1$ for any $i \in\{1, \cdots, n\}$

Question 5. Let V be a finite-dimensional complex inner product space, and let $T: V \rightarrow V$ be an operator on V. Prove that

$$
\operatorname{det} T^{*}=\overline{\operatorname{det} T}
$$

Proof. We can first find a basis $v_{1} \cdots v_{n}$ of V such that the matrix of T under this basis is upper-triangular. So we have $T\left(v_{i}\right)=d_{i} v_{i}+w_{i}$ for some $d_{i} \in \mathbb{F}$ and $w_{i} \in$ $\operatorname{span}\left(v_{1}, \cdots, v_{i-1}\right)$, then Proposition 3.7 in the lecture notes gives us that $\operatorname{det} T=$ $d_{1} d_{2} \cdots d_{n}$. Proposition 7.10 says that the matrix of T^{*} under the basis $v_{1} \cdots v_{n}$ is the conjugate transpose of the matrix of T under $v_{1} \cdots v_{n}$, which is an lowertriangular matrix. So we have $T^{*}\left(v_{i}\right)=\bar{d}_{i} v_{i}+u_{i}$ for some $u_{i} \in \operatorname{span}\left(v_{i+1}, \cdots, v_{n}\right)$. Notice that if we reorder the basis as $\left\{v_{n}, v_{n-1}, \cdots, v_{1}\right\}$, then the matrix of T^{*} under the new basis is upper-triangular, with diagonal entries $\bar{d}_{n}, \bar{d}_{n-1}, \cdots, \bar{d}_{1}$. Thus we have $\operatorname{det} T^{*}=\overline{d_{n} \cdots d_{1}}=\overline{d_{1} \cdots d_{n}}=\overline{\operatorname{det} T}$, as desired.

