
Math 113 Homework 9 Solutions

Solutions by Guanyang Wang, with edits by Tom Church.

Question 1. Let V = R2, and let T ∈ L(V ) be an operator on V . Assume that
v ∈ V and w ∈ V are two non-zero vectors satisfying

T (v) = 2v and T (w) = −w

Compute the determinant det(T 4 + T ).

Answer. Notice that (T 4 + T )(w) = T 4w + Tw = w − w = 0. Therefore T 4 + T
is not injective, and thus not invertible. Using Proposition 3.3, we know that
det(T 4 + T )=0. �

Question 2. On HW 5, you found the minimal polynomial of the operator T ∈
L(R4) with matrix 

2 0 0 0
0 3 0 1
0 0 3 0
0 0 0 3


Find the characteristic polynomial of T .

Answer. Recall that the characteristic polynomial χT (x) is the function defined by

χT (x) = det(xI − T )

The operator xI − T ∈ L(R4) has matrix
x− 2 0 0 0

0 x− 3 0 −1
0 0 x− 3 0
0 0 0 x− 3


which is upper-triangular. By proposition 3.7, the determinant of an upper-triangular
operator is product of diagonal entries, so χT (x) = det(xI−T ) = (x−2)(x−3)3. �

Question 3. Let V be an n-dimensional vector space, and let T ∈ L(V ) be an
operator on V . Let χT (x) be the characteristic polynomial of T . Which of the
following implications is true?

I. If χT (x) has n distinct roots, then T is diagonalizable.
II. If T is diagonalizable, then χT (x) has n distinct roots.
III. Both I and II are true.
IV. Neither I nor II is true.
Prove that your answer is correct, by either proving or giving a counterexample

for I, and either proving or giving a counterexample for II.

Proof. Statement I is correct. It follows from Proposition 4.2 that the operator T
has n distinct eigenvalues, then from Theorem 5.44 in our textbook, we know that
T is diagonalizable.
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Statement II is false. Now suppose n = 2, F = R and let T = I, the identity
operator on R2. Then T is diagonalizable. Meanwhile the operator xI − T =
xI − I = (x− 1)I ∈ L(R2) has matrix(

x− 1 0
0 x− 1

)
So we have χT (x) = det(xI − T ) = det(xI − I) = det((x− 1)I) = (x− 1)2, which
has only one root 1. Therefore this is a counterexample of statement II. �

Question 4. Let V be a finite-dimensional complex inner product space, and let
T : V → V be an operator on V . Prove that if T is an isometry, then |detT | = 1.

Proof. We know from Thm 7.43 that there is an orthonormal basis of V consisting
of eigenvectors of T whose corresponding eigenvalues all have absolute value 1. Let
e1, . . . , en be the eigenbasis and λ1, . . . , λn be the corresponding eigenvalues. Then
we just need to calculate T (e1) ∧ · · · ∧ T (en)

T (e1) ∧ · · · ∧ T (en) = λ1e1 ∧ · · · ∧ λnen = λ1 · · ·λn · e1 ∧ · · · ∧ en
Therefore |detT | = |λ1 · · ·λn| = 1 since |λi| = 1 for any i ∈ {1, · · · , n} �

Question 5. Let V be a finite-dimensional complex inner product space, and let
T : V → V be an operator on V . Prove that

detT ∗ = detT

Proof. We can first find a basis v1 · · · vn of V such that the matrix of T under this
basis is upper-triangular. So we have T (vi) = divi + wi for some di ∈ F and wi ∈
span(v1, · · · , vi−1), then Proposition 3.7 in the lecture notes gives us that detT =
d1d2 · · · dn. Proposition 7.10 says that the matrix of T ∗ under the basis v1 · · · vn
is the conjugate transpose of the matrix of T under v1 · · · vn, which is an lower-
triangular matrix. So we have T ∗(vi) = divi + ui for some ui ∈ span(vi+1, · · · , vn).
Notice that if we reorder the basis as {vn, vn−1, · · · , v1}, then the matrix of T ∗ under
the new basis is upper-triangular, with diagonal entries dn, dn−1, · · · , d1. Thus we
have detT ∗ = dn · · · d1 = d1 · · · dn = detT , as desired.
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