Math 113: Linear Algebra and Matrix Theory
 Thomas Church (tfchurch@stanford.edu)
 http://math.stanford.edu/~church/teaching/113-F15

Homework 9

(the last HW assignment)

Due Wednesday, December 2 in class

Do all the following questions.
Question 1. Let $V=\mathbb{R}^{2}$, and let $T \in \mathcal{L}(V)$ be an operator on V. Assume that $v \in V$ and $w \in V$ are two nonzero vectors satisfying

$$
T(v)=2 v \quad \text { and } \quad T(w)=-w .
$$

Compute the determinant $\operatorname{det}\left(T^{4}+T\right)$.
Question 2. On HW 5, you found the minimal polynomial of the operator $T \in \mathcal{L}\left(\mathbb{R}^{4}\right)$ with matrix

$$
\left[\begin{array}{llll}
2 & 0 & 0 & 0 \\
0 & 3 & 0 & 1 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & 3
\end{array}\right]
$$

Find the characteristic polynomial of T.
Question 3. Let V be an n-dimensional vector space, and let $T \in \mathcal{L}(V)$ be an operator on V. Let $\chi_{T}(x)$ be the characteristic polynomial of T. Which of the following implications is true?
I. If $\chi_{T}(x)$ has n distinct roots, then T is diagonalizable.
II. If T is diagonalizable, then $\chi_{T}(x)$ has n distinct roots.
III. Both I and II are true.
IV. Neither I nor II is true.

Prove that your answer is correct, by either proving or giving a counterexample for I, and either proving or giving a counterexample for II.

Question 4. Let V be a finite-dimensional complex inner product space, and let $T: V \rightarrow V$ be an operator on V. Prove that if T is an isometry, then $|\operatorname{det} T|=1$.
The term "isometry" was defined in class, as part of our big table of types of operators and their properties (normal; self-adjoint; positive; isometry; orthogonal projection). If you need a reminder, they are addressed in Chapter 7C (which we did not cover in detail).

Question 5. Let V be a finite-dimensional complex inner product space, and let $T: V \rightarrow V$ be an operator on V. Prove that

$$
\operatorname{det} T^{*}=\overline{\operatorname{det} T} .
$$

