
Math 113 Homework 8 Solutions

Solutions by Guanyang Wang, with edits by Tom Church.
Exercises from the book.
Exercise 7.A.11 Suppose P ∈ L(V ) is such that P 2 = P . Prove that there is

a subspace U of V such that P = PU if and only if P is self-adjoint.

Proof. First suppose there is a subspace U of V such that P = PU . Suppose
v1, v2 ∈ V . Write

v1 = u1 + w1, v2 = u2 + w2,

where u1, u2 ∈ U and w1, w2 ∈ U⊥ (see 6.47). Now

〈Pv1, v2〉 = 〈u1, u2 + w2〉
= 〈u1, u2〉+ 〈u1, w2〉
= 〈u1, u2〉
= 〈u1, u2〉+ 〈w1, u2〉
= 〈v1, u2〉
= 〈v1, Pv2〉

Therefore P = P ∗. Hence P is self-adjoint.
To prove the implication in the other direction, now suppose P is self-adjoint.

Let v ∈ V , because P (v − Pv) = Pv − P 2v = 0, we have

v − Pv ∈ nullP = (rangeP ∗)⊥ = rangeP⊥,

where the first equality comes from 7.7(c). Writing

v = Pv + (v − Pv).

We have Pv ∈ rangeP and v − Pv ∈ rangeP⊥. Thus Pv = PrangeP v. Since this
holds for all v ∈ V , we have P = PrangeP . �

Exercise 7.A.12 Suppose that T is a normal operator on V and that 3 and 4
are eigenvalues of T . Prove that there exists a vector v ∈ V such that ||v|| =

√
2

and ||Tv|| = 5.

Proof. Let u and v be eigenvectors of T corresponding to the eigenvalues 3 and 4.
Thus,

Tu = 3u and Tw = 4w.

Replacing u with u
||u|| and w with w

||w|| , we can assume that

||u|| = ||w|| = 1.

Because T is normal, 7.22 implies that u and w are orthogonal. Now the Pythagoream
Theorem implies that

||u+ w|| =
√
||u||2 + ||w||2 =

√
2.

Using the Pythagoream Theorem again, we have

||T (u+ w)|| = ||3u+ 4w|| =
√

9||u||2 + 16||w||2 =
√

25 = 5.

Thus taking v = u+w, we have a vector v such that ||v|| =
√

2 and ||Tv|| = 5. �
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Exercise 7.A.16 Prove that if T ∈ L(V ) is normal, then

rangeT = rangeT ∗

Proof. By Prop 7.20 in the book, T is normal implies that ||Tv|| = ||T ∗v|| for all
v. Thus, if v ∈ nullT then ||Tv|| = 0 implies that ||T ∗v|| = 0, thus v ∈ nullT ∗. As
(T ∗)∗ = T , this means that v ∈ nullT iff v ∈ nullT ∗. So the kernels of T and T ∗

are equal.
By Prop 7.7, nullT ∗ = (rangeT )⊥ and nullT = (rangeT ∗)⊥. As nullT =

nullT ∗, this implies that

(rangeT )⊥ = (rangeT ∗)⊥

If U is a subspace of V , then (U⊥)⊥ = U . Taking the orthogonal complement of
both sides of the above equation give us rangeT = rangeT ∗. �

Exercise 7.B.1. True or false (and give a proof of your answer): There exists
T ∈ L(R3) such that T is not self-adjoint (with respect to the usual inner product)
and such that there is a basis of R3 consisting of eigenvectors of T .

Proof. The statement above is true. To produce the desired example, note that
(1, 0, 0), (0, 1, 0), (1, 1, 1) is a basis of R3 and consider the operator T ∈ R3 such
that

T (1, 0, 0) = (0, 0, 0)

T (0, 1, 0) = (0, 0, 0)

T (1, 1, 1) = (1, 1, 1)

here we have used 3.5 to guarantee the existence of an operator T with the properties
above.

The vector (1, 0, 0) and (0, 1, 0) are eigenvectors of T with eigenvalue 0; the
vector (1, 1, 1) is an eigenvector of T with eigenvalue 1. Thus there is a basis of R3

consisting of eigenvectors of T .
However, 7.22 tells us that T is not normal (and thus not self-adjoint) because

the eigenvectors (1, 0, 0) and (1, 1, 1) correspond to distinct eigenvalues but these
eigenvectors are not orthogonal. �

Exercise 7.B.2 Suppose that T is a self-adjoint operator on a finite-dimensional
inner product space and that 2 and 3 are the only eigenvalues of T . Prove that
T 2 − 5T + 6I = 0

Proof. If v is an eigenvector of T with eigenvalue 2, then

(T 2 − 5T + 6I)v = ((T − 3I)(T − 2I))v

= (T − 3I)((T − 2I)v)

= (T − 3I)0

= 0
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Similarly, if v is an eigenvector of T with eigenvalue 3, then

(T 2 − 5T + 6I)v = ((T − 2I)(T − 3I))v

= (T − 2I)((T − 3I)v)

= (T − 2I)0

= 0

By the Complex Spectral Theorem, there is an orthonormal basis of the domain
of T consisting of eigenvectors of T . The equations above show that T 2 − 5T + 6I
applied to any such basis vector equals 0. Since a linear map is determined by its
values on a basis, T 2 − 5T + 6I = 0. �

Exercise 7.B.7 Suppose V is a complex inner product space and T ∈ L(V ) is
a normal operator such that T 9 = T 8. Prove that T is self-adjoint and T 2 = T .

Proof. By the Complex Spectral Theorem(7.24), there is an orthonormal basis
e1, ..., en of V consisting of eigenvectors of T . Let λ1, ..., λn be the correspond-
ing eigenvalues. Thus

Tej = λjej

for j = 1, ..., n. Applying T repeatedly both sides of the equation above, we get
T 9ej = λ9jej and T 8ej = λ8jej . Thus λ9j = λ8j , which implies that λj equals 0 or
1. In particular, all the eigenvalues of T are real. The matrix of T with respect
to the orthonormal basis e1, ..., en is the diagonal matrix with λ1, ..., λn on the
diagonal. This matrix equals its conjugate transpose. Thus T = T ∗. Hence T is
self-adjoint, as desired. [Alternate argument: we know from class that “self-adjoint”
is equivalent to “normal and all eigenvalues are real”.]

Applying T to both sides of the equation above, we get

T 2ej = λ2jej

= λjej

= Tej ,

where the second equality holds because λj equals 0 or 1. Because T 2 and T agree
on a basis, they are equal. �

Question 1.

a) Given an example of two self-adjoint operators S ∈ L(R2) and T ∈ L(R2) whose
product is not self-adjoint.

Let V be a finite-dimensional inner product space, and assume that S, T ∈
L(V ) are self-adjoint.

b) Prove that ST + TS is a self-adjoint operator.
c) Prove that ST is self-adjoint iff ST = TS.

Proof. a) Let T, S : R2 → R2 s.t.

T (x, y) = (x+ 2y, 2x) and S(x, y) = (y, x+ y)

Their matrices with respect to the standard basis (which is orthonormal) are

M(T ) =

[
1 2
2 0

]
and M(S) =

[
0 1
1 1

]
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These operators are self-adjoint because the matrices are equal to their conjugate-
transposes. The product of these matrices is

M(T )M(S) =

[
2 3
0 2

]
This matrix is not equal to its conjugate transpose. As the standard basis is
orthonormal, this implies that TS is not self-adjoint.

b) We expand the following expression, using the fact that S, T are self-adjoint:

〈(ST + TS)v, w〉 = 〈STv,w〉+ 〈TSv,w〉
= 〈Tv, S∗w〉+ 〈Sv, T ∗w〉
= 〈Tv, Sw〉+ 〈Sv, Tw〉
= 〈v, T ∗Sw〉+ 〈v, S∗Tw〉
= 〈v, TSw〉+ 〈v, STw〉
= 〈v, (TS + ST )w〉

Therefore, 〈(ST + TS)v, w〉 = 〈v, (TS + ST )w〉 so ST + TS is self-adjoint. �
c) If ST = TS, then ST + TS = 2ST . Since 2ST is self-adjoint, and 2 is a real

number,

2〈STv,w〉 = 〈2STv,w〉
= 〈v, 2STw〉
= 2〈v, STw〉

Since our field is either R or C, we get that 〈STv,w〉 = 〈v, STw〉, so ST is
self-adjoint.

Suppose ST is self-adjoint. Then

〈STv,w〉 = 〈v, STw〉
and,

〈STv,w〉 = 〈v, (ST )∗w〉
= 〈v, T ∗S∗w〉
= 〈v, TSw〉 because T, S are self-adjoint.

Since

〈v, STw〉 = 〈v, TSw〉 for all v, w ∈ V ,

〈v, (ST − TS)w〉 = 0 for all v, w ∈ V , so setting v = (ST − TS)w,

||(ST − TS)w||2 = 0 for all w ∈ V , therefore,

ST − TS = 0

So ST = TS. �


