Math 113 Homework 8 Solutions

Solutions by Guanyang Wang, with edits by Tom Church.
Exercises from the book.
Exercise 7.A. 11 Suppose $P \in \mathcal{L}(V)$ is such that $P^{2}=P$. Prove that there is a subspace U of V such that $P=P_{U}$ if and only if P is self-adjoint.

Proof. First suppose there is a subspace U of V such that $P=P_{U}$. Suppose $v_{1}, v_{2} \in V$. Write

$$
v_{1}=u_{1}+w_{1}, v_{2}=u_{2}+w_{2}
$$

where $u_{1}, u_{2} \in U$ and $w_{1}, w_{2} \in U^{\perp}$ (see 6.47). Now

$$
\begin{aligned}
\left\langle P v_{1}, v_{2}\right\rangle & =\left\langle u_{1}, u_{2}+w_{2}\right\rangle \\
& =\left\langle u_{1}, u_{2}\right\rangle+\left\langle u_{1}, w_{2}\right\rangle \\
& =\left\langle u_{1}, u_{2}\right\rangle \\
& =\left\langle u_{1}, u_{2}\right\rangle+\left\langle w_{1}, u_{2}\right\rangle \\
& =\left\langle v_{1}, u_{2}\right\rangle \\
& =\left\langle v_{1}, P v_{2}\right\rangle
\end{aligned}
$$

Therefore $P=P^{*}$. Hence P is self-adjoint.
To prove the implication in the other direction, now suppose P is self-adjoint. Let $v \in V$, because $P(v-P v)=P v-P^{2} v=0$, we have

$$
v-P v \in \operatorname{null} P=\left(\text { range } P^{*}\right)^{\perp}=\operatorname{range} P^{\perp}
$$

where the first equality comes from $7.7(c)$. Writing

$$
v=P v+(v-P v)
$$

We have $P v \in$ range P and $v-P v \in$ range P^{\perp}. Thus $P v=P_{\text {range } P v \text {. Since this }}$ holds for all $v \in V$, we have $P=P_{\text {range } P}$.

Exercise 7.A.12 Suppose that T is a normal operator on V and that 3 and 4 are eigenvalues of T. Prove that there exists a vector $v \in V$ such that $\|v\|=\sqrt{2}$ and $\|T v\|=5$.

Proof. Let u and v be eigenvectors of T corresponding to the eigenvalues 3 and 4 . Thus,

$$
T u=3 u \text { and } T w=4 w
$$

Replacing u with $\frac{u}{\|u\|}$ and w with $\frac{w}{\|w\|}$, we can assume that

$$
\|u\|=\|w\|=1
$$

Because T is normal, 7.22 implies that u and w are orthogonal. Now the Pythagoream Theorem implies that

$$
\|u+w\|=\sqrt{\|u\|^{2}+\|w\|^{2}}=\sqrt{2}
$$

Using the Pythagoream Theorem again, we have

$$
\|T(u+w)\|=\|3 u+4 w\|=\sqrt{9\|u\|^{2}+16\|w\|^{2}}=\sqrt{25}=5
$$

Thus taking $v=u+w$, we have a vector v such that $\|v\|=\sqrt{2}$ and $\|T v\|=5$.

Exercise 7.A.16 Prove that if $T \in L(V)$ is normal, then

$$
\text { range } T=\operatorname{range} T^{*}
$$

Proof. By Prop 7.20 in the book, T is normal implies that $\|T v\|=\left\|T^{*} v\right\|$ for all v. Thus, if $v \in \operatorname{null} T$ then $\|T v\|=0$ implies that $\left\|T^{*} v\right\|=0$, thus $v \in \operatorname{null} T^{*}$. As $\left(T^{*}\right)^{*}=T$, this means that $v \in \operatorname{null} T$ iff $v \in \operatorname{null} T^{*}$. So the kernels of T and T^{*} are equal.

By Prop 7.7, null $T^{*}=(\text { range } T)^{\perp}$ and null $T=\left(\text { range } T^{*}\right)^{\perp}$. As null $T=$ null T^{*}, this implies that

$$
(\text { range } T)^{\perp}=\left(\text { range } T^{*}\right)^{\perp}
$$

If U is a subspace of V, then $\left(U^{\perp}\right)^{\perp}=U$. Taking the orthogonal complement of both sides of the above equation give us range $T=$ range T^{*}.

Exercise 7.B.1. True or false (and give a proof of your answer): There exists $T \in \mathcal{L}\left(\mathbb{R}^{3}\right)$ such that T is not self-adjoint (with respect to the usual inner product) and such that there is a basis of \mathbb{R}^{3} consisting of eigenvectors of T.

Proof. The statement above is true. To produce the desired example, note that $(1,0,0),(0,1,0),(1,1,1)$ is a basis of \mathbb{R}^{3} and consider the operator $T \in \mathbb{R}^{3}$ such that

$$
\begin{aligned}
& T(1,0,0)=(0,0,0) \\
& T(0,1,0)=(0,0,0) \\
& T(1,1,1)=(1,1,1)
\end{aligned}
$$

here we have used 3.5 to guarantee the existence of an operator T with the properties above.

The vector $(1,0,0)$ and $(0,1,0)$ are eigenvectors of T with eigenvalue 0 ; the vector $(1,1,1)$ is an eigenvector of T with eigenvalue 1 . Thus there is a basis of \mathbb{R}^{3} consisting of eigenvectors of T.

However, 7.22 tells us that T is not normal (and thus not self-adjoint) because the eigenvectors $(1,0,0)$ and $(1,1,1)$ correspond to distinct eigenvalues but these eigenvectors are not orthogonal.

Exercise 7.B. 2 Suppose that T is a self-adjoint operator on a finite-dimensional inner product space and that 2 and 3 are the only eigenvalues of T. Prove that $T^{2}-5 T+6 I=0$

Proof. If v is an eigenvector of T with eigenvalue 2 , then

$$
\begin{aligned}
\left(T^{2}-5 T+6 I\right) v & =((T-3 I)(T-2 I)) v \\
& =(T-3 I)((T-2 I) v) \\
& =(T-3 I) 0 \\
& =0
\end{aligned}
$$

Similarly, if v is an eigenvector of T with eigenvalue 3 , then

$$
\begin{aligned}
\left(T^{2}-5 T+6 I\right) v & =((T-2 I)(T-3 I)) v \\
& =(T-2 I)((T-3 I) v) \\
& =(T-2 I) 0 \\
& =0
\end{aligned}
$$

By the Complex Spectral Theorem, there is an orthonormal basis of the domain of T consisting of eigenvectors of T. The equations above show that $T^{2}-5 T+6 I$ applied to any such basis vector equals 0 . Since a linear map is determined by its values on a basis, $T^{2}-5 T+6 I=0$.

Exercise 7.B.7 Suppose V is a complex inner product space and $T \in \mathcal{L}(V)$ is a normal operator such that $T^{9}=T^{8}$. Prove that T is self-adjoint and $T^{2}=T$.
Proof. By the Complex Spectral Theorem(7.24), there is an orthonormal basis e_{1}, \ldots, e_{n} of V consisting of eigenvectors of T. Let $\lambda_{1}, \ldots, \lambda_{n}$ be the corresponding eigenvalues. Thus

$$
T e_{j}=\lambda_{j} e_{j}
$$

for $j=1, \ldots, n$. Applying T repeatedly both sides of the equation above, we get $T^{9} e_{j}=\lambda_{j}^{9} e_{j}$ and $T^{8} e_{j}=\lambda_{j}^{8} e_{j}$. Thus $\lambda_{j}^{9}=\lambda_{j}^{8}$, which implies that λ_{j} equals 0 or 1. In particular, all the eigenvalues of T are real. The matrix of T with respect to the orthonormal basis e_{1}, \ldots, e_{n} is the diagonal matrix with $\lambda_{1}, \ldots, \lambda_{n}$ on the diagonal. This matrix equals its conjugate transpose. Thus $T=T^{*}$. Hence T is self-adjoint, as desired. [Alternate argument: we know from class that "self-adjoint" is equivalent to "normal and all eigenvalues are real".]

Applying T to both sides of the equation above, we get

$$
\begin{aligned}
T^{2} e_{j} & =\lambda_{j}^{2} e_{j} \\
& =\lambda_{j} e_{j} \\
& =T e_{j}
\end{aligned}
$$

where the second equality holds because λ_{j} equals 0 or 1 . Because T^{2} and T agree on a basis, they are equal.

Question 1.

a) Given an example of two self-adjoint operators $S \in \mathcal{L}\left(\mathbb{R}^{2}\right)$ and $T \in \mathcal{L}\left(\mathbb{R}^{2}\right)$ whose product is not self-adjoint.

Let V be a finite-dimensional inner product space, and assume that $S, T \in$ $\mathcal{L}(V)$ are self-adjoint.
b) Prove that $S T+T S$ is a self-adjoint operator.
c) Prove that $S T$ is self-adjoint iff $S T=T S$.

Proof. a) Let $T, S: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ s.t.

$$
T(x, y)=(x+2 y, 2 x) \text { and } S(x, y)=(y, x+y)
$$

Their matrices with respect to the standard basis (which is orthonormal) are

$$
M(T)=\left[\begin{array}{ll}
1 & 2 \\
2 & 0
\end{array}\right] \quad \text { and } \quad M(S)=\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right]
$$

These operators are self-adjoint because the matrices are equal to their conjugatetransposes. The product of these matrices is

$$
M(T) M(S)=\left[\begin{array}{ll}
2 & 3 \\
0 & 2
\end{array}\right]
$$

This matrix is not equal to its conjugate transpose. As the standard basis is orthonormal, this implies that $T S$ is not self-adjoint.
b) We expand the following expression, using the fact that S, T are self-adjoint:

$$
\begin{aligned}
\langle(S T+T S) v, w\rangle & =\langle S T v, w\rangle+\langle T S v, w\rangle \\
& =\left\langle T v, S^{*} w\right\rangle+\left\langle S v, T^{*} w\right\rangle \\
& =\langle T v, S w\rangle+\langle S v, T w\rangle \\
& =\left\langle v, T^{*} S w\right\rangle+\left\langle v, S^{*} T w\right\rangle \\
& =\langle v, T S w\rangle+\langle v, S T w\rangle \\
& =\langle v,(T S+S T) w\rangle
\end{aligned}
$$

Therefore, $\langle(S T+T S) v, w\rangle=\langle v,(T S+S T) w\rangle$ so $S T+T S$ is self-adjoint.
c) If $S T=T S$, then $S T+T S=2 S T$. Since $2 S T$ is self-adjoint, and 2 is a real number,

$$
\begin{aligned}
2\langle S T v, w\rangle & =\langle 2 S T v, w\rangle \\
& =\langle v, 2 S T w\rangle \\
& =2\langle v, S T w\rangle
\end{aligned}
$$

Since our field is either \mathbb{R} or \mathbb{C}, we get that $\langle S T v, w\rangle=\langle v, S T w\rangle$, so $S T$ is self-adjoint.

Suppose $S T$ is self-adjoint. Then

$$
\langle S T v, w\rangle=\langle v, S T w\rangle
$$

and,

$$
\begin{aligned}
\langle S T v, w\rangle & =\left\langle v,(S T)^{*} w\right\rangle \\
& =\left\langle v, T^{*} S^{*} w\right\rangle \\
& =\langle v, T S w\rangle \text { because } T, S \text { are self-adjoint. }
\end{aligned}
$$

Since

$$
\begin{aligned}
\langle v, S T w\rangle & =\langle v, T S w\rangle \text { for all } v, w \in V \\
\langle v,(S T-T S) w\rangle & =0 \text { for all } v, w \in V, \text { so setting } v=(S T-T S) w, \\
\|(S T-T S) w\|^{2} & =0 \text { for all } w \in V, \text { therefore, } \\
S T-T S & =0
\end{aligned}
$$

So $S T=T S$.

