Math 113: Linear Algebra and Matrix Theory
 Thomas Church (tfchurch@stanford.edu)
 http://math.stanford.edu/~church/teaching/113-F15

Homework 8

Due Wednesday, November 18 in class.
Do all the following exercises and questions.
7 A .11
7B. 1

7 A. 12
7B. 2
7A. 16
7B. 7

Question 1.

(a) Give an example of two self-adjoint operators $S \in \mathcal{L}\left(\mathbb{R}^{2}\right)$ and $T \in \mathcal{L}\left(\mathbb{R}^{2}\right)$ whose product $S T$ is not self-adjoint.

Let V be a finite-dimensional inner product space, and assume that $S \in \mathcal{L}(V)$ and $T \in \mathcal{L}(V)$ are self-adjoint.
(b) Prove that $S T+T S$ is a self-adjoint operator.
(c) Prove that $S T$ is self-adjoint if and only if $S T=T S$.

