MATH 113 HOMEWORK 6 SOLUTIONS

Solutions by Guanyang Wang, with edits by Tom Church.
Exercises from the book.
Exercise 6.C.4 Suppose U is the subspace of R* defined by

U= Sp&l’l((l, 2a 3a _4)7 (_57 47 37 2))
Find an orthonormal basis of U and an orthonormal basis of U+

Answer. Notice that the list (1,2,3,—4) and (—5,4,3,2) is linearly independent
since neither vector is the scalar multiple of the other. Thus we will extend the list
(1,2,3,—-4),(-5,4,3,2) to a basis

(1a 27 37 _4)5 (_5a 47 37 2)7 w1, W2
of R* and then apply the Gram-Schmidt Procedure.

To extend (1,2,3,—4),(—5,4,3,2) to a basis of R* | we follow the idea of the
proof of 2.33. Thus we start with the list

(17 2a 3) _4)a (_5747 3a 2)) (1707 Oa 0)7 (07 1a 0? 0)? (07 Oa 17 0)7 (Oa Oa 07 1)

which spans R*. We need to apply the Gram-Schmidt Procedure anyway, and thus
in this case the easiest thing to do is to start the Gram-Schmidt Procedure and
throw out any vectors that would lead to division by 0(indicating linear indepen-
dence), or stop when we reach a list of length four.

To get started, we have

R R € VA EALVEA)

Next,
o — (—5,4,3,2) — ((—=5,4,3,2),e1)e;
1(=5,4,3,2) = ((—5,4,3,2), e1)eq |
(o Vs 9V )
m 6015’ 4010’ 6015
Next,
o — (1,0,0,0) — ((1,0,0,0),e1)e; — {(1,0,0,0), ea)es

||(17070a0) - <(1a03070)7€1>€1 - <(1a05070)762>€2”

:< 190 u7 [0 151)
4017 /76190 V 7619’ /76190 |
There is no division by 0 here, and no linear dependence yet.
Next,
(0,1,0,0) —((0,1,0,0),e1)e; — {(0,1,0,0), ea)es — ((0,1,0,0), e3)es
[1(0,1,0,0) — {(0,1,0,0),e1)e; — ((0,1,0,0),e2)ea — {(0,1,0,0), e3)es||

€4 =

(o 9 10 3
"V190" V197 V190 )
Again there is no division by 0 here, and thus no linear dependence yet.
Since R* has dimension 4, we know that e1, es, €3, e4 is a basis of R*, and there

is no need to continue the process further.
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Thus, by the previous exercise,

( \/7[ \/7>< VI2030° 28\/60215’13\/40310’19\/60215>

is an orthonormal basis of U and

@117610 151 O9_E_3
4017 /76190° V 7619 /76190 / '\ /190’ 197 /190

is an orthonormal basis of U+ O

Exercise 6.C.6 Suppose U and W are finite-dimensional subspaces of V. Prove
that Py Py = 0 if and only if (u,w) =0 for all w € U and all w € W.
Proof. First suppose Py Py = 0. Suppose w € W. Then
0= PUPWw
= PU’U)
Hence w € nullPy. Now 6.55(e) shows that w € U+. Thus (u,w) = 0 for all u € U,
completing one direction of the proof.

To prove the other direction, now suppose that (u,w) = 0 for all w € U and all
we€W. Thus U C Wt and W c UL, If w € W, then

(PUPV[/*)(IU) = PU(PWw) = PUUJ =0
where the last equality holds because w € U+. If v € W+, then
(PUPV[/')(U) = PU(PWv) = PUO = 0.

Since every element in V' can be written as the sum of a vector in W and a vector
in W+ (by 6.47), the last two equations imply that Py Py = 0, as desired. O

Exercise 6.C.11 In R*, let
U = span((1,1,0,0), (1,1,1,2))
Find v € U s.t. |lu —(1,2,3,4)]| is as small as possible.

Proof. First, we find an orthogonal basis for U. (So we won’t bother to make the
vectors have norm 1.) We keep u; = (1,1,0,0). Then we subtract off u; from
vy = (1,1,1,2). We have that vy — u; = (0,0,1,2) is perpendicular to u;. So we
set ug = (0,0,1,2). Now uy,us form a basis for U. Using this basis, we see that
elements of U are vectors of the form (z,z,y,2y) for z,y € R.

So we want to find z and y s.t. the vector (z,z,y,2y) — (1,2, 3,4) has the least

norm. Noting that (x,x,y,2y)—(1,2,3,4) = (z—1,2—2,y—3, 2y —4), we compute
Iz =1 = 2,5~ 3,2y — DI = (@ — 1)? + (2 — 2% + (y — 3)* + (2y — 4)?
=222 — 6z + 5+ 5y> — 22y + 16
=222 — 62 + 5y? — 22y + 21

This is minimized when p(x) = 222 — 6z and ¢(y) = 5y? — 22y are both minimized.
As their leading coefficients are positive, both of these quadratics go to infinity as x



and y go to infinity, respectively. Thus their local critical points are their respective
minima. Taking derivatives, we get that

p’(m) =4z — 6 and ¢'(y) = 10y — 22

So their minima are at z = 3 3 and y = Q , respectively. Therefore the vector u € U
s.t. |Ju—(1,2,3,4)|| is smallest is u = (3, 3,41 22)

Here is another way to do this problem:

The vector vs = (0, 1,1,0) is not in U because it is not of the correct form. Note
that (1,2,3,4) = uy + 2ug + v3 so (1,2,3,4) is in the span of uy,us and vs. We
want to find a vector ug in the span of uq,us and vs s.t. wug is orthogonal to u; and
us. We have that

vs-uy =1and vz -us =1
We also have

up-up =2 and us - ug =5
Thus uz = v3 — é Uy — éuz is orthogonal to u; and us. We can see this directly by
writing uz = (— % % % —%) Since (1,2,3,4) = u1 + 2ug + v3 and v3 = uz + %ul +
Luy, we get that

5
3 11
(172,3,4) = §U1 + EUQ + us
3 11 114 2
= (1,1 ~(0,0,1,2 Soo, -2
S(L1,0,0)+ 2 (0,0,1,2) + (~3, 5,5, ~2)

Now suppose u € U is the vector s.t. ||u — (1,2,3,4)|| is minimal. Since u € U,
we can write u = aju; + asus for some aq,as € R. Thus,

3 11
||u_ (17273a4)” = ||a1u1 + agug — 5“1 + EU2 +'LL3||

11
=||(a1 — 5)“1 + (ag — g)u2 — ug|
11
= (a1 — 5)2||u1||2 + (az — €)2||u2||2 + [fus|[®

because U1, Uz, uz are orthogonal. This quantity is minimized when a; = % and as =
L. Thus the u € U that is closest to (1,2,3,4) is 3uy + Hup = (3,3, 4, 22). D

Exercise 7.A.1. Suppose n is a positive integer. Define T' € L(F") b
T(z1, ey 2n) = (0,21, ees Zn—1)
Find a formula for T* (21, ..., 2)
Proof. Fix (z1,...,2n) € F™. Then for every (w1, ..., w,) € F", we have
(W1, ey W), T (21, evey 20)) = (T (W1, ooy W), (21,5 ooy 20))

= (0, w1, e, Wp—1), (21, ey Zn))

Thus



Exercise 7.A.2 Suppose 7' € L(V) and A € F. Prove that ) is an eigenvalue of
T iff )\ is an eigenvalue of T*.

Proof. Suppose A is an eigenvalue of T. Then there is some v # 0 s.t. Tv = Av.
Thus,

(Tv,w) = (A, w)
for each w € V. Note that (Av,w) = Mv,w) = (v, \w) by linearity of the inner
product. If 7% is the adjoint of T', then (T'(v),w) = (v, T*w), so we have

(v, \w) = (v, T*w)
for each w in W. By linearity of the inner product, this means that

(v, T*w — Aw) =0

for each w € W. Thus, v is perpendicular to all vectors of the form T*w — \w.

Let S = T* — M. The image of S is all vectors of the form T*w — Aw so v
is perpendicular to all vectors in the image of S. However, since v is nonzero,
it cannot be perpendicular to itself ({(v,v) > 0 is an axiom of inner products), so
v ¢ ImageS. This shows that ImageS # V', so dim ImageS must be strictly less than
the dimension of the image of V. By Rank-Nullity, this implies that dim NullS > 0.
Therefore, there is some non-zero element in the null space of S. So there is some
w s.t. T*w = \w, meaning \ is an eigenvalue of T*.

Since (T*)* = T, this also shows that any eigenvalue of T* is also the conjugate
of an eigenvalue of T. Therefore X is an eigenvalue of T iff A is an eigenvalue of
T O

Exercise 7.A.4 Suppose T € L(V,W). Prove that

(a) T is injective if and only if T™* is surjective;
(b) T is surjective if and only if T* is injective.

Proof. First we prove (a)
T is injective <= Null T =0
<= (RangeT™)* =0
<= RangeT* =W
<= T is surjective

Where the second line comes from 7.7(c).
Note that (a) has been proved, (b) follows immediately by replacing 7" with T*
in (a). |

Question 1. Suppose (eq,...,€,) is an orthonormal list of vectors in V. Let
v € V. Prove that

1] = (v, e1)” + - + (v, em)

if and only if v € span(ey, ..., em).



5

Proof. Denote span(ey,...,em,) by U. Then we can write every vector v in V as
u+w with u € U and w € U*. So we have

1ol = (u+ w,u+w) = (u,u) + (w,w) = [Jul]* + ||w]”

The second equality holds since (u,w) = (w,u) = 0.
Then, since (eq,...,e,) is an orthonormal basis of U. We can find ay, ..., an,
such that v = aje; + - -+ + a;mem. Therefore we have

||u\|2 ={a1e1 + -+ amem, a1e1 + - + amem)

m

Z (aiei, ajej>

ij=1

m
= Z a;aj(ei, ej)

4,J=1

Since e; and e; are orthogonal if ¢ # j, and since (e;, e;) = 1, we get
Jul® = Jar|* + -+ + |am|?
On the other hand,
(v, ;) = (u+w,e;)
= (are1 + -+ + amem + w, ;)
= ai

Since e; and w are orthogonal for every i € {1,2...,m}, and since e; and e; are
orthogonal if i # j.

So, (v, €;)|? = |a;|? meaning that
[oll* = [Jul[* + [|w]|?
= lar|* + -+ |am|* + |Jw]
= (v, e + -+ (v, ) + [l

If v € span(eq,...,en), then v = ajeq + -+ + amen. That is, w = 0. Thus
][> = (v, e)* + - - + [{v, em) *.

If [[v]|? = [{(v,e1)|* + -+ + |(v, em)|?, then we have ||w||* = 0, therefore w = 0,
so we have v = u+ 0 = u € U. By definition, U = span(ey,...,en), so v €

span(ey, ..., em).
(]

Question 2. Let V be the vector space of infinite sequences of real numbers:
V ={(a1,a2,...,) | a; € R}

This is an infinite dimensional vector space over R. Let T € £L(V) be the forward
shift defined by

T(al,ag,...):(0,0,1,0,2,...)
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a) The operator T + I is given by
(T—i—[)(al,ag,ag,...) = (al,al + ao, az —|—a3,...)

Find an inverse (T + )~ for this operator.
b) For which values A € R is the operator T' — AI non-invertible?
¢) What are the eigenvalues of T'?
d) Explain the discrepancy between your answers to 2 and 3.

Proof. a) The operator T + I is given by
(T + I)(a1,a2,as,...) = (a1,a1 + as,as + as,...)
Let
S(ay,as,as,...) = (a1,a2 —ay,a3 —as + a1,a4 —az +as —ay,...)
This is the inverse of T' + I. To see this, we compute S(T + I)(a1,az,...):
S(ay, a1 + ag,as + as,...) = (a1, (a1 + az) — a1, (as + a3z) — (a1 + a2) + ay,...)

Thus S(T+1)v = v for all v € V. We also need to compute (T'+1)S(aq,az,...):

(T+1)(a1,a2—ay,a3—as+as,...) = (a1, (az—ay)+a1, (ag—az+a1)+(az—ai),...)

Thus (T'+ I)Sv=wv for all v € V. Since S(T'+I) = (T +1)S = I, we get that
S=(T+1I)"" O
b) The operator T — AI is given by

(T)\I)(al,az,ag, .. ) = (—)\ahal — )\ag,ag — )\a3,. )

Let
G (1 1 1 1 1 1
A= (—Xal, —Fal — XGQ, —Fal — ﬁag — Xag, .. )
For A\ # 0, we will show that S\ = (T'—AI)~!. Indeed, if we write Sy (a1, aa,...) =
(b1, by, ...) then the n' term of S is b, = —%al — %0,2 — = %am which
is in fact %(bn_l —an). We can see by, by, ... all as functions from V to R.

We apply S to (T'—AI)(ay,as,...). Wehave that by (a1, as,...)is —3(—Aay) =
ai;. The nt" term of (T — AI)(a1,az2,...) is an_1 — Aa,. Suppose b, (T —
M)(ai,az2,...) = ap—1. Then

1

b (T — M) (ay,a9,...) = X(bn_l(T_ M) (ay,az2,...) — (an—1 — Aay))

(because by (ar,as,...) =bp_1 — an)
1

= X(an_l - (an—l - Aan))

(since by assumption, by,_1(T — X)(a1,...) = ay)
= an

So by induction, Sy(T'— AI) = I. This can be seen by direct computation for
the first few terms:

Sx(=Aai,a1 — Aag,as — Aas,...) =

1 1 1
(a1, —~5(=Aar) — X(al — Aag), — F(—)\al) -

1 1
b\ —Q(al—)\ag)—x(ag—)\ag),...)

A

- (a17a2,a3a"')
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Next, we must show that (T — AI)Sx(a1,az,...) = (a1,as,...). Once again,
we use that the n*" term of Sy(a1,as,...) is b, = %(bn_l — ay), and that the
nt" term of (T — AI)(ay,as,...) is @n_1 — Aa,. Thus,

(T - )\I)(S)\(al,(IQ, N )) = (T - )\I)(bl, bg, e )
= (=Ab1,b1 — Ao, ... b1 — Ny, .. .)
1 1 1
= (—)\(—Xal), bl — )\(X(bl — an)), ey bn_1 — )\(X(bn_l — an)), ‘e
= (al,ag,...,an,...)
Therefore (T —AI)Sy = I. Since (T —AI)Sy = S\(T—X) =1, Sy = (T —\)~1
for all A # 0.

Thus T — A is invertible for all A # 0. However, for A = 0 we have T'— A\l =
T —0I =T, and T is not invertible. Indeed, the image of T is clearly contained
in the subspace {(0, %, ,*,...)} of sequences whose first entry is 0, so 7" is not
surjective. Since T is not surjective, it cannot be bijective, so it cannot have an

inverse even as a map of sets.
(However, note that if we let S be the backwards shift:

S(ay,a9,as,...) = (az,as,...)
Then applying Sy to T', we get
S(T(a1,az,...)) =5(0,a1,as,...)
= (a1, as,...)
So ST = I, which might lead us to think that T is invertible.
However,
T(S(a1,as2,as3,...)) =T(az,as,...)
= (0,a9,as,...)

So T'S # I, and so we see that S is not an inverse for T'.
So T — AI is not invertible only for A = 0. O
¢) Suppose M is an eigenvalue of T. Then T(ay,as,...) = A(a1,as,...) meaning
that
(0,(11,0,2, .. ) = ()\al,)\ag,. . )

This gives us that Aa; = 0, so either A = 0 or a; = 0. This equation also gives

us Aa, = a,_1 forn > 2. If A =0, then ay,asq,... all equal zero. Thus A is not
an eigenvalue. If a; = 0 but A # 0 then Aas = a; implies that ay = 0, and so
on. So if A # 0 then we also get that a; = a3 = -+ = 0. Therefore T has no
eigenvalues. (Il

d) The discrepancy is that 7' — Al is not invertible when A = 0, but 0 is not
an eigenvalue of 7. In the finite-dimensional case, when an operator is not
invertible, it is also not injective by Rank-Nullity. If 7" — AI were not injective
that would mean that (T'— AI) # {0}, so A would be an eigenvalue. However,
V' is infinite-dimensional. In the infinite-dimensional case, an operator can be
not invertible, and still be injective because Rank-Nullity no longer holds (nor
does it make sense.) T is an example of such an operator that is injective but
not invertible. That is why we have that 7" is not invertible, but 0 is not an
eigenvalue of T ([l



