
Math 113 Homework 6 Solutions

Solutions by Guanyang Wang, with edits by Tom Church.
Exercises from the book.
Exercise 6.C.4 Suppose U is the subspace of R4 defined by

U = span((1, 2, 3,−4), (−5, 4, 3, 2))

Find an orthonormal basis of U and an orthonormal basis of U⊥

Answer. Notice that the list (1, 2, 3,−4) and (−5, 4, 3, 2) is linearly independent
since neither vector is the scalar multiple of the other. Thus we will extend the list
(1, 2, 3,−4), (−5, 4, 3, 2) to a basis

(1, 2, 3,−4), (−5, 4, 3, 2), w1, w2

of R4 and then apply the Gram-Schmidt Procedure.
To extend (1, 2, 3,−4), (−5, 4, 3, 2) to a basis of R4 , we follow the idea of the

proof of 2.33. Thus we start with the list

(1, 2, 3,−4), (−5, 4, 3, 2), (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)

which spans R4. We need to apply the Gram-Schmidt Procedure anyway, and thus
in this case the easiest thing to do is to start the Gram-Schmidt Procedure and
throw out any vectors that would lead to division by 0(indicating linear indepen-
dence), or stop when we reach a list of length four.

To get started, we have

e1 =
(1, 2, 3,−4)

‖(1, 2, 3,−4)‖
=

(
1√
30
,

√
2

15
,

√
3

10
,−2

√
2

15

)
.

Next,

e2 =
(−5, 4, 3, 2)− 〈(−5, 4, 3, 2), e1〉e1
‖(−5, 4, 3, 2)− 〈(−5, 4, 3, 2), e1〉e1‖

=

(
− 77√

12030
, 28

√
2

6015
, 13

√
3

4010
, 19

√
2

6015

)
.

Next,

e3 =
(1, 0, 0, 0)− 〈(1, 0, 0, 0), e1〉e1 − 〈(1, 0, 0, 0), e2〉e2
‖(1, 0, 0, 0)− 〈(1, 0, 0, 0), e1〉e1 − 〈(1, 0, 0, 0), e2〉e2‖

=

(√
190

401
,

117√
76190

, 6

√
10

7619
,

151√
76190

)
.

There is no division by 0 here, and no linear dependence yet.
Next,

e4 =
(0, 1, 0, 0)− 〈(0, 1, 0, 0), e1〉e1 − 〈(0, 1, 0, 0), e2〉e2 − 〈(0, 1, 0, 0), e3〉e3
‖(0, 1, 0, 0)− 〈(0, 1, 0, 0), e1〉e1 − 〈(0, 1, 0, 0), e2〉e2 − 〈(0, 1, 0, 0), e3〉e3‖

=

(
0,

9√
190

,−
√

10

19
,− 3√

190

)
.

Again there is no division by 0 here, and thus no linear dependence yet.
Since R4 has dimension 4, we know that e1, e2, e3, e4 is a basis of R4, and there

is no need to continue the process further.
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Thus, by the previous exercise,(
1√
30
,

√
2

15
,

√
3

10
,−2

√
2

15

)
,

(
− 77√

12030
, 28

√
2

6015
, 13

√
3

4010
, 19

√
2

6015

)
is an orthonormal basis of U and(√

190

401
,

117√
76190

, 6

√
10

7619
,

151√
76190

)
,

(
0,

9√
190

,−
√

10

19
,− 3√

190

)
is an orthonormal basis of U⊥ �

Exercise 6.C.6 Suppose U and W are finite-dimensional subspaces of V . Prove
that PUPW = 0 if and only if 〈u,w〉 = 0 for all u ∈ U and all w ∈W .

Proof. First suppose PUPW = 0. Suppose w ∈W . Then

0 = PUPWw

= PUw

Hence w ∈ nullPU . Now 6.55(e) shows that w ∈ U⊥. Thus 〈u,w〉 = 0 for all u ∈ U ,
completing one direction of the proof.

To prove the other direction, now suppose that 〈u,w〉 = 0 for all u ∈ U and all
w ∈W . Thus U ⊂W⊥ and W ⊂ U⊥. If w ∈W , then

(PUPW )(w) = PU (PWw) = PUw = 0

where the last equality holds because w ∈ U⊥. If v ∈W⊥, then

(PUPW )(v) = PU (PW v) = PU0 = 0.

Since every element in V can be written as the sum of a vector in W and a vector
in W⊥ (by 6.47), the last two equations imply that PUPW = 0, as desired. �

Exercise 6.C.11 In R4, let

U = span
(
(1, 1, 0, 0), (1, 1, 1, 2)

)
Find u ∈ U s.t. ||u− (1, 2, 3, 4)|| is as small as possible.

Proof. First, we find an orthogonal basis for U . (So we won’t bother to make the
vectors have norm 1.) We keep u1 = (1, 1, 0, 0). Then we subtract off u1 from
v2 = (1, 1, 1, 2). We have that v2 − u1 = (0, 0, 1, 2) is perpendicular to u1. So we
set u2 = (0, 0, 1, 2). Now u1, u2 form a basis for U . Using this basis, we see that
elements of U are vectors of the form (x, x, y, 2y) for x, y ∈ R.

So we want to find x and y s.t. the vector (x, x, y, 2y)− (1, 2, 3, 4) has the least
norm. Noting that (x, x, y, 2y)−(1, 2, 3, 4) = (x−1, x−2, y−3, 2y−4), we compute

||(x− 1, x− 2, y − 3, 2y − 4)||2 = (x− 1)2 + (x− 2)2 + (y − 3)2 + (2y − 4)2

= 2x2 − 6x+ 5 + 5y2 − 22y + 16

= 2x2 − 6x+ 5y2 − 22y + 21

This is minimized when p(x) = 2x2− 6x and q(y) = 5y2− 22y are both minimized.
As their leading coefficients are positive, both of these quadratics go to infinity as x
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and y go to infinity, respectively. Thus their local critical points are their respective
minima. Taking derivatives, we get that

p′(x) = 4x− 6 and q′(y) = 10y − 22

So their minima are at x = 3
2 and y = 11

5 , respectively. Therefore the vector u ∈ U
s.t. ||u− (1, 2, 3, 4)|| is smallest is u = ( 3

2 ,
3
2 ,

11
5 ,

22
5 ).

Here is another way to do this problem:
The vector v3 = (0, 1, 1, 0) is not in U because it is not of the correct form. Note

that (1, 2, 3, 4) = u1 + 2u2 + v3 so (1, 2, 3, 4) is in the span of u1, u2 and v3. We
want to find a vector u3 in the span of u1, u2 and v3 s.t. u3 is orthogonal to u1 and
u2. We have that

v3 · u1 = 1 and v3 · u2 = 1

We also have

u1 · u1 = 2 and u2 · u2 = 5

Thus u3 = v3 − 1
2u1 −

1
5u2 is orthogonal to u1 and u2. We can see this directly by

writing u3 = (− 1
2 ,

1
2 ,

4
5 ,−

2
5 ). Since (1, 2, 3, 4) = u1 + 2u2 + v3 and v3 = u3 + 1

2u1 +
1
5u2, we get that

(1, 2, 3, 4) =
3

2
u1 +

11

5
u2 + u3

=
3

2
(1, 1, 0, 0) +

11

5
(0, 0, 1, 2) + (−1

2
,

1

2
,

4

5
,−2

5
)

Now suppose u ∈ U is the vector s.t. ||u− (1, 2, 3, 4)|| is minimal. Since u ∈ U ,
we can write u = a1u1 + a2u2 for some a1, a2 ∈ R. Thus,

||u− (1, 2, 3, 4)|| = ||a1u1 + a2u2 −
3

2
u1 +

11

5
u2 + u3||

= ||(a1 −
3

2
)u1 + (a2 −

11

5
)u2 − u3||

= (a1 −
3

2
)2||u1||2 + (a2 −

11

5
)2||u2||2 + ||u3||2

because u1, u2, u3 are orthogonal. This quantity is minimized when a1 = 3
2 and a2 =

11
5 . Thus the u ∈ U that is closest to (1, 2, 3, 4) is 3

2u1 + 11
5 u2 = ( 3

2 ,
3
2 ,

11
5 ,

22
5 ). �

Exercise 7.A.1. Suppose n is a positive integer. Define T ∈ L(Fn) by

T (z1, ..., zn) = (0, z1, ..., zn−1)

Find a formula for T ∗(z1, ..., zn)

Proof. Fix (z1, ..., zn) ∈ Fn. Then for every (w1, ..., wn) ∈ Fn, we have

〈(w1, ..., wn), T ∗(z1, ..., zn)〉 = 〈T (w1, ..., wn), (z1, ..., zn)〉
= 〈(0, w1, ..., wn−1), (z1, ..., zn)〉
= w1z2 + ...+ wn−1zn

= 〈(w1, ..., wn), (z2, ..., zn, 0)〉.

Thus

T ∗(z1, ..., zn) = (z2, ..., zn, 0).

�
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Exercise 7.A.2 Suppose T ∈ L(V ) and λ ∈ F. Prove that λ is an eigenvalue of
T iff λ̄ is an eigenvalue of T ∗.

Proof. Suppose λ is an eigenvalue of T . Then there is some v 6= 0 s.t. Tv = λv.
Thus,

〈Tv,w〉 = 〈λv,w〉
for each w ∈ V . Note that 〈λv,w〉 = λ〈v, w〉 = 〈v, λ̄w〉 by linearity of the inner
product. If T ∗ is the adjoint of T , then 〈T (v), w〉 = 〈v, T ∗w〉, so we have

〈v, λ̄w〉 = 〈v, T ∗w〉

for each w in W . By linearity of the inner product, this means that

〈v, T ∗w − λ̄w〉 = 0

for each w ∈W . Thus, v is perpendicular to all vectors of the form T ∗w − λ̄w.
Let S = T ∗ − λ̄I. The image of S is all vectors of the form T ∗w − λ̄w so v

is perpendicular to all vectors in the image of S. However, since v is nonzero,
it cannot be perpendicular to itself (〈v, v〉 > 0 is an axiom of inner products), so
v 6∈ ImageS. This shows that ImageS 6= V , so dim ImageS must be strictly less than
the dimension of the image of V . By Rank-Nullity, this implies that dim NullS > 0.
Therefore, there is some non-zero element in the null space of S. So there is some
w s.t. T ∗w = λ̄w, meaning λ̄ is an eigenvalue of T ∗.

Since (T ∗)∗ = T , this also shows that any eigenvalue of T ∗ is also the conjugate
of an eigenvalue of T . Therefore λ is an eigenvalue of T iff λ̄ is an eigenvalue of
T ∗. �

Exercise 7.A.4 Suppose T ∈ L(V,W ). Prove that

(a) T is injective if and only if T ∗ is surjective;
(b) T is surjective if and only if T ∗ is injective.

Proof. First we prove (a)

T is injective⇐⇒ Null T = 0

⇐⇒ (RangeT ∗)⊥ = 0

⇐⇒ RangeT ∗ = W

⇐⇒ T is surjective

Where the second line comes from 7.7(c).
Note that (a) has been proved, (b) follows immediately by replacing T with T ∗

in (a). �

Question 1. Suppose (e1, . . . , em) is an orthonormal list of vectors in V . Let
v ∈ V . Prove that

||v||2 = |〈v, e1〉|2 + · · ·+ |〈v, em〉|2

if and only if v ∈ span(e1, . . . , em).
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Proof. Denote span(e1, . . . , em) by U . Then we can write every vector v in V as
u+ w with u ∈ U and w ∈ U⊥. So we have

||v||2 = 〈u+ w, u+ w〉 = 〈u, u〉+ 〈w,w〉 = ||u||2 + ||w||2

The second equality holds since (u,w) = (w, u) = 0.
Then, since (e1, . . . , em) is an orthonormal basis of U . We can find a1, ..., am

such that u = a1e1 + · · ·+ amem. Therefore we have

||u||2 = 〈a1e1 + · · ·+ amem, a1e1 + · · ·+ amem〉

=

m∑
i,j=1

〈aiei, ajej〉

=

m∑
i,j=1

aiaj〈ei, ej〉

Since ei and ej are orthogonal if i 6= j, and since 〈ei, ei〉 = 1, we get

||u||2 = |a1|2 + · · ·+ |am|2

On the other hand,

〈v, ei〉 = 〈u+ w, ei〉
= 〈a1e1 + · · ·+ amem + w, ei〉
= ai

Since ei and w are orthogonal for every i ∈ {1, 2...,m}, and since ei and ej are
orthogonal if i 6= j.

So, |〈v, ei〉|2 = |ai|2 meaning that

||v||2 = ||u||2 + ||w||2

= |a1|2 + · · ·+ |am|2 + ||w||2

= |〈v, e1〉|2 + · · ·+ |〈v, em〉|2 + ||w||2

If v ∈ span(e1, . . . , em), then v = a1e1 + · · · + amem. That is, w = 0. Thus
||v||2 = |〈v, e1〉|2 + · · ·+ |〈v, em〉|2.

If ||v||2 = |〈v, e1〉|2 + · · · + |〈v, em〉|2, then we have ||w||2 = 0, therefore w = 0,
so we have v = u + 0 = u ∈ U. By definition, U = span(e1, . . . , em), so v ∈
span(e1, . . . , em).

�

Question 2. Let V be the vector space of infinite sequences of real numbers:

V = {(a1, a2, . . . , ) | ai ∈ R}

This is an infinite dimensional vector space over R. Let T ∈ L(V ) be the forward
shift defined by

T (a1, a2, . . . ) = (0, a1, a2, . . . )
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a) The operator T + I is given by

(T + I)(a1, a2, a3, . . . ) = (a1, a1 + a2, a2 + a3, . . . )

Find an inverse (T + I)−1 for this operator.
b) For which values λ ∈ R is the operator T − λI non-invertible?
c) What are the eigenvalues of T?
d) Explain the discrepancy between your answers to 2 and 3.

Proof. a) The operator T + I is given by

(T + I)(a1, a2, a3, . . . ) = (a1, a1 + a2, a2 + a3, . . . )

Let

S(a1, a2, a3, . . . ) = (a1, a2 − a1, a3 − a2 + a1, a4 − a3 + a2 − a1, . . . )

This is the inverse of T + I. To see this, we compute S(T + I)(a1, a2, . . . ):

S(a1, a1 + a2, a2 + a3, . . . ) = (a1, (a1 + a2)− a1, (a2 + a3)− (a1 + a2) + a1, . . . )

Thus S(T+I)v = v for all v ∈ V . We also need to compute (T+I)S(a1, a2, . . . ):

(T+I)(a1, a2−a1, a3−a2+a1, . . . ) = (a1, (a2−a1)+a1, (a3−a2+a1)+(a2−a1), . . . )

Thus (T + I)Sv = v for all v ∈ V . Since S(T + I) = (T + I)S = I, we get that
S = (T + I)−1. �

b) The operator T − λI is given by

(TλI)(a1, a2, a3, . . . ) = (−λa1, a1 − λa2, a2 − λa3, . . . )

Let

Sλ = (− 1

λ
a1,−

1

λ2
a1 −

1

λ
a2,−

1

λ3
a1 −

1

λ2
a2 −

1

λ
a3, . . . )

For λ 6= 0, we will show that Sλ = (T−λI)−1. Indeed, if we write Sλ(a1, a2, . . . ) =
(b1, b2, . . . ) then the nth term of Sλ is bn = − 1

λn a1 − 1
λn−1 a2 − · · · − 1

λan, which

is in fact 1
λ (bn−1 − an). We can see b1, b2, . . . all as functions from V to R.

We apply Sλ to (T−λI)(a1, a2, . . . ). We have that b1(a1, a2, . . . ) is− 1
λ (−λa1) =

a1. The nth term of (T − λI)(a1, a2, . . . ) is an−1 − λan. Suppose bn−1(T −
λI)(a1, a2, . . . ) = an−1. Then

bn(T − λI)(a1, a2, . . . ) =
1

λ
(bn−1(T − λI)(a1, a2, . . . )− (an−1 − λan))

(because bn(a1, a2, . . . ) = bn−1 − an)

=
1

λ
(an−1 − (an−1 − λan))

(since by assumption, bn−1(T − λI)(a1, . . . ) = an)

= an

So by induction, Sλ(T − λI) = I. This can be seen by direct computation for
the first few terms:

Sλ(−λa1, a1 − λa2, a2 − λa3, . . . ) =

(a1,−
1

λ2
(−λa1)− 1

λ
(a1 − λa2),− 1

λ3
(−λa1)− 1

λ2
(a1 − λa2)− 1

λ
(a2 − λa3), . . . )

= (a1, a2,a3, . . . )
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Next, we must show that (T − λI)Sλ(a1, a2, . . . ) = (a1, a2, . . . ). Once again,
we use that the nth term of Sλ(a1, a2, . . . ) is bn = 1

λ (bn−1 − an), and that the

nth term of (T − λI)(a1, a2, . . . ) is an−1 − λan. Thus,

(T − λI)(Sλ(a1,a2, . . . )) = (T − λI)(b1, b2, . . . )

= (−λb1, b1 − λb2, . . . , bn−1 − λbn, . . . )

= (−λ(− 1

λ
a1), b1 − λ(

1

λ
(b1 − an)), . . . , bn−1 − λ(

1

λ
(bn−1 − an)), . . . )

= (a1, a2, . . . , an, . . . )

Therefore (T −λI)Sλ = I. Since (T −λI)Sλ = Sλ(T −λI) = I, Sλ = (T −λI)−1

for all λ 6= 0.
Thus T −λI is invertible for all λ 6= 0. However, for λ = 0 we have T −λI =

T − 0I = T , and T is not invertible. Indeed, the image of T is clearly contained
in the subspace {(0, ∗, ∗, ∗, . . .)} of sequences whose first entry is 0, so T is not
surjective. Since T is not surjective, it cannot be bijective, so it cannot have an
inverse even as a map of sets.

(However, note that if we let S be the backwards shift:

S(a1, a2, a3, . . . ) = (a2, a3, . . . )

Then applying S0 to T , we get

S(T (a1, a2, . . . )) = S(0, a1, a2, . . . )

= (a1, a2, . . . )

So ST = I, which might lead us to think that T is invertible.
However,

T (S(a1, a2, a3, . . . )) = T (a2, a3, . . . )

= (0, a2, a3, . . . )

So TS 6= I, and so we see that S is not an inverse for T .
So T − λI is not invertible only for λ = 0. �

c) Suppose λ is an eigenvalue of T . Then T (a1, a2, . . . ) = λ(a1, a2, . . . ) meaning
that

(0, a1, a2, . . . ) = (λa1, λa2, . . . )

This gives us that λa1 = 0, so either λ = 0 or a1 = 0. This equation also gives
us λan = an−1 for n ≥ 2. If λ = 0, then a1, a2, . . . all equal zero. Thus λ is not
an eigenvalue. If a1 = 0 but λ 6= 0 then λa2 = a1 implies that a2 = 0, and so
on. So if λ 6= 0 then we also get that a1 = a2 = · · · = 0. Therefore T has no
eigenvalues. �

d) The discrepancy is that T − λI is not invertible when λ = 0, but 0 is not
an eigenvalue of T . In the finite-dimensional case, when an operator is not
invertible, it is also not injective by Rank-Nullity. If T − λI were not injective
that would mean that (T − λI) 6= {0}, so λ would be an eigenvalue. However,
V is infinite-dimensional. In the infinite-dimensional case, an operator can be
not invertible, and still be injective because Rank-Nullity no longer holds (nor
does it make sense.) T is an example of such an operator that is injective but
not invertible. That is why we have that T is not invertible, but 0 is not an
eigenvalue of T . �


