Math 113 Homework 6 Solutions

Solutions by Guanyang Wang, with edits by Tom Church.
Exercises from the book.
Exercise 6.C.4 Suppose U is the subspace of \mathbb{R}^{4} defined by

$$
U=\operatorname{span}((1,2,3,-4),(-5,4,3,2))
$$

Find an orthonormal basis of U and an orthonormal basis of U^{\perp}
Answer. Notice that the list $(1,2,3,-4)$ and $(-5,4,3,2)$ is linearly independent since neither vector is the scalar multiple of the other. Thus we will extend the list $(1,2,3,-4),(-5,4,3,2)$ to a basis

$$
(1,2,3,-4),(-5,4,3,2), w_{1}, w_{2}
$$

of \mathbb{R}^{4} and then apply the Gram-Schmidt Procedure.
To extend $(1,2,3,-4),(-5,4,3,2)$ to a basis of \mathbb{R}^{4}, we follow the idea of the proof of 2.33. Thus we start with the list

$$
(1,2,3,-4),(-5,4,3,2),(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)
$$

which spans \mathbb{R}^{4}. We need to apply the Gram-Schmidt Procedure anyway, and thus in this case the easiest thing to do is to start the Gram-Schmidt Procedure and throw out any vectors that would lead to division by 0 (indicating linear independence), or stop when we reach a list of length four.

To get started, we have

$$
e_{1}=\frac{(1,2,3,-4)}{\|(1,2,3,-4)\|}=\left(\frac{1}{\sqrt{30}}, \sqrt{\frac{2}{15}}, \sqrt{\frac{3}{10}},-2 \sqrt{\frac{2}{15}}\right)
$$

Next,

$$
\begin{aligned}
e_{2} & =\frac{(-5,4,3,2)-\left\langle(-5,4,3,2), e_{1}\right\rangle e_{1}}{\left\|(-5,4,3,2)-\left\langle(-5,4,3,2), e_{1}\right\rangle e_{1}\right\|} \\
& =\left(-\frac{77}{\sqrt{12030}}, 28 \sqrt{\frac{2}{6015}}, 13 \sqrt{\frac{3}{4010}}, 19 \sqrt{\frac{2}{6015}}\right)
\end{aligned}
$$

Next,

$$
\begin{aligned}
e_{3} & =\frac{(1,0,0,0)-\left\langle(1,0,0,0), e_{1}\right\rangle e_{1}-\left\langle(1,0,0,0), e_{2}\right\rangle e_{2}}{\left\|(1,0,0,0)-\left\langle(1,0,0,0), e_{1}\right\rangle e_{1}-\left\langle(1,0,0,0), e_{2}\right\rangle e_{2}\right\|} \\
& =\left(\sqrt{\frac{190}{401}}, \frac{117}{\sqrt{76190}}, 6 \sqrt{\frac{10}{7619}}, \frac{151}{\sqrt{76190}}\right)
\end{aligned}
$$

There is no division by 0 here, and no linear dependence yet.
Next,

$$
\begin{aligned}
e_{4} & =\frac{(0,1,0,0)-\left\langle(0,1,0,0), e_{1}\right\rangle e_{1}-\left\langle(0,1,0,0), e_{2}\right\rangle e_{2}-\left\langle(0,1,0,0), e_{3}\right\rangle e_{3}}{\left\|(0,1,0,0)-\left\langle(0,1,0,0), e_{1}\right\rangle e_{1}-\left\langle(0,1,0,0), e_{2}\right\rangle e_{2}-\left\langle(0,1,0,0), e_{3}\right\rangle e_{3}\right\|} \\
& =\left(0, \frac{9}{\sqrt{190}},-\sqrt{\frac{10}{19}},-\frac{3}{\sqrt{190}}\right) .
\end{aligned}
$$

Again there is no division by 0 here, and thus no linear dependence yet.
Since \mathbb{R}^{4} has dimension 4 , we know that $e_{1}, e_{2}, e_{3}, e_{4}$ is a basis of \mathbb{R}^{4}, and there is no need to continue the process further.

Thus, by the previous exercise,

$$
\left(\frac{1}{\sqrt{30}}, \sqrt{\frac{2}{15}}, \sqrt{\frac{3}{10}},-2 \sqrt{\frac{2}{15}}\right),\left(-\frac{77}{\sqrt{12030}}, 28 \sqrt{\frac{2}{6015}}, 13 \sqrt{\frac{3}{4010}}, 19 \sqrt{\frac{2}{6015}}\right)
$$

is an orthonormal basis of U and

$$
\left(\sqrt{\frac{190}{401}}, \frac{117}{\sqrt{76190}}, 6 \sqrt{\frac{10}{7619}}, \frac{151}{\sqrt{76190}}\right),\left(0, \frac{9}{\sqrt{190}},-\sqrt{\frac{10}{19}},-\frac{3}{\sqrt{190}}\right)
$$

is an orthonormal basis of U^{\perp}

Exercise 6.C.6 Suppose U and W are finite-dimensional subspaces of V. Prove that $P_{U} P_{W}=0$ if and only if $\langle u, w\rangle=0$ for all $u \in U$ and all $w \in W$.

Proof. First suppose $P_{U} P_{W}=0$. Suppose $w \in W$. Then

$$
\begin{aligned}
0 & =P_{U} P_{W} w \\
& =P_{U} w
\end{aligned}
$$

Hence $w \in \operatorname{null}_{U}$. Now $6.55(e)$ shows that $w \in U^{\perp}$. Thus $\langle u, w\rangle=0$ for all $u \in U$, completing one direction of the proof.

To prove the other direction, now suppose that $\langle u, w\rangle=0$ for all $u \in U$ and all $w \in W$. Thus $U \subset W^{\perp}$ and $W \subset U^{\perp}$. If $w \in W$, then

$$
\left(P_{U} P_{W}\right)(w)=P_{U}\left(P_{W} w\right)=P_{U} w=0
$$

where the last equality holds because $w \in U^{\perp}$. If $v \in W^{\perp}$, then

$$
\left(P_{U} P_{W}\right)(v)=P_{U}\left(P_{W} v\right)=P_{U} 0=0 .
$$

Since every element in V can be written as the sum of a vector in W and a vector in W^{\perp} (by 6.47), the last two equations imply that $P_{U} P_{W}=0$, as desired.

Exercise 6.C. 11 In \mathbb{R}^{4}, let

$$
U=\operatorname{span}((1,1,0,0),(1,1,1,2))
$$

Find $u \in U$ s.t. $\|u-(1,2,3,4)\|$ is as small as possible.
Proof. First, we find an orthogonal basis for U. (So we won't bother to make the vectors have norm 1.) We keep $u_{1}=(1,1,0,0)$. Then we subtract off u_{1} from $v_{2}=(1,1,1,2)$. We have that $v_{2}-u_{1}=(0,0,1,2)$ is perpendicular to u_{1}. So we set $u_{2}=(0,0,1,2)$. Now u_{1}, u_{2} form a basis for U. Using this basis, we see that elements of U are vectors of the form $(x, x, y, 2 y)$ for $x, y \in \mathbb{R}$.

So we want to find x and y s.t. the vector $(x, x, y, 2 y)-(1,2,3,4)$ has the least norm. Noting that $(x, x, y, 2 y)-(1,2,3,4)=(x-1, x-2, y-3,2 y-4)$, we compute

$$
\begin{aligned}
\|(x-1, x-2, y-3,2 y-4)\|^{2} & =(x-1)^{2}+(x-2)^{2}+(y-3)^{2}+(2 y-4)^{2} \\
& =2 x^{2}-6 x+5+5 y^{2}-22 y+16 \\
& =2 x^{2}-6 x+5 y^{2}-22 y+21
\end{aligned}
$$

This is minimized when $p(x)=2 x^{2}-6 x$ and $q(y)=5 y^{2}-22 y$ are both minimized. As their leading coefficients are positive, both of these quadratics go to infinity as x
and y go to infinity, respectively. Thus their local critical points are their respective minima. Taking derivatives, we get that

$$
p^{\prime}(x)=4 x-6 \text { and } q^{\prime}(y)=10 y-22
$$

So their minima are at $x=\frac{3}{2}$ and $y=\frac{11}{5}$, respectively. Therefore the vector $u \in U$ s.t. $\|u-(1,2,3,4)\|$ is smallest is $u=\left(\frac{3}{2}, \frac{3}{2}, \frac{11}{5}, \frac{22}{5}\right)$.

Here is another way to do this problem:
The vector $v_{3}=(0,1,1,0)$ is not in U because it is not of the correct form. Note that $(1,2,3,4)=u_{1}+2 u_{2}+v_{3}$ so $(1,2,3,4)$ is in the span of u_{1}, u_{2} and v_{3}. We want to find a vector u_{3} in the span of u_{1}, u_{2} and v_{3} s.t. u_{3} is orthogonal to u_{1} and u_{2}. We have that

$$
v_{3} \cdot u_{1}=1 \text { and } v_{3} \cdot u_{2}=1
$$

We also have

$$
u_{1} \cdot u_{1}=2 \text { and } u_{2} \cdot u_{2}=5
$$

Thus $u_{3}=v_{3}-\frac{1}{2} u_{1}-\frac{1}{5} u_{2}$ is orthogonal to u_{1} and u_{2}. We can see this directly by writing $u_{3}=\left(-\frac{1}{2}, \frac{1}{2}, \frac{4}{5},-\frac{2}{5}\right)$. Since $(1,2,3,4)=u_{1}+2 u_{2}+v_{3}$ and $v_{3}=u_{3}+\frac{1}{2} u_{1}+$ $\frac{1}{5} u_{2}$, we get that

$$
\begin{aligned}
(1,2,3,4) & =\frac{3}{2} u_{1}+\frac{11}{5} u_{2}+u_{3} \\
& =\frac{3}{2}(1,1,0,0)+\frac{11}{5}(0,0,1,2)+\left(-\frac{1}{2}, \frac{1}{2}, \frac{4}{5},-\frac{2}{5}\right)
\end{aligned}
$$

Now suppose $u \in U$ is the vector s.t. $\|u-(1,2,3,4)\|$ is minimal. Since $u \in U$, we can write $u=a_{1} u_{1}+a_{2} u_{2}$ for some $a_{1}, a_{2} \in \mathbb{R}$. Thus,

$$
\begin{aligned}
\|u-(1,2,3,4)\| & =\left\|a_{1} u_{1}+a_{2} u_{2}-\frac{3}{2} u_{1}+\frac{11}{5} u_{2}+u_{3}\right\| \\
& =\left\|\left(a_{1}-\frac{3}{2}\right) u_{1}+\left(a_{2}-\frac{11}{5}\right) u_{2}-u_{3}\right\| \\
& =\left(a_{1}-\frac{3}{2}\right)^{2}\left\|u_{1}\right\|^{2}+\left(a_{2}-\frac{11}{5}\right)^{2}\left\|u_{2}\right\|^{2}+\left\|u_{3}\right\|^{2}
\end{aligned}
$$

because u_{1}, u_{2}, u_{3} are orthogonal. This quantity is minimized when $a_{1}=\frac{3}{2}$ and $a_{2}=$ $\frac{11}{5}$. Thus the $u \in U$ that is closest to $(1,2,3,4)$ is $\frac{3}{2} u_{1}+\frac{11}{5} u_{2}=\left(\frac{3}{2}, \frac{3}{2}, \frac{11}{5}, \frac{22}{5}\right)$.

Exercise 7.A.1. Suppose n is a positive integer. Define $T \in \mathcal{L}\left(\mathbb{F}^{n}\right)$ by

$$
T\left(z_{1}, \ldots, z_{n}\right)=\left(0, z_{1}, \ldots, z_{n-1}\right)
$$

Find a formula for $T^{*}\left(z_{1}, \ldots, z_{n}\right)$
Proof. Fix $\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{F}^{n}$. Then for every $\left(w_{1}, \ldots, w_{n}\right) \in \mathbb{F}^{n}$, we have

$$
\begin{aligned}
\left\langle\left(w_{1}, \ldots, w_{n}\right), T^{*}\left(z_{1}, \ldots, z_{n}\right)\right\rangle & =\left\langle T\left(w_{1}, \ldots, w_{n}\right),\left(z_{1}, \ldots, z_{n}\right)\right\rangle \\
& =\left\langle\left(0, w_{1}, \ldots, w_{n-1}\right),\left(z_{1}, \ldots, z_{n}\right)\right\rangle \\
& =w_{1} \overline{z_{2}}+\ldots+w_{n-1} \overline{z_{n}} \\
& =\left\langle\left(w_{1}, \ldots, w_{n}\right),\left(z_{2}, \ldots, z_{n}, 0\right)\right\rangle .
\end{aligned}
$$

Thus

$$
T^{*}\left(z_{1}, \ldots, z_{n}\right)=\left(z_{2}, \ldots, z_{n}, 0\right)
$$

Exercise 7.A. 2 Suppose $T \in \mathcal{L}(V)$ and $\lambda \in \mathbb{F}$. Prove that λ is an eigenvalue of T iff $\bar{\lambda}$ is an eigenvalue of T^{*}.

Proof. Suppose λ is an eigenvalue of T. Then there is some $v \neq 0$ s.t. $T v=\lambda v$. Thus,

$$
\langle T v, w\rangle=\langle\lambda v, w\rangle
$$

for each $w \in V$. Note that $\langle\lambda v, w\rangle=\lambda\langle v, w\rangle=\langle v, \bar{\lambda} w\rangle$ by linearity of the inner product. If T^{*} is the adjoint of T, then $\langle T(v), w\rangle=\left\langle v, T^{*} w\right\rangle$, so we have

$$
\langle v, \bar{\lambda} w\rangle=\left\langle v, T^{*} w\right\rangle
$$

for each w in W. By linearity of the inner product, this means that

$$
\left\langle v, T^{*} w-\bar{\lambda} w\right\rangle=0
$$

for each $w \in W$. Thus, v is perpendicular to all vectors of the form $T^{*} w-\bar{\lambda} w$.
Let $S=T^{*}-\bar{\lambda} I$. The image of S is all vectors of the form $T^{*} w-\bar{\lambda} w$ so v is perpendicular to all vectors in the image of S. However, since v is nonzero, it cannot be perpendicular to itself $(\langle v, v\rangle>0$ is an axiom of inner products), so $v \notin$ Image S. This shows that Image $S \neq V$, so dim Image S must be strictly less than the dimension of the image of V. By Rank-Nullity, this implies that dim Null $S>0$. Therefore, there is some non-zero element in the null space of S. So there is some w s.t. $T^{*} w=\bar{\lambda} w$, meaning $\bar{\lambda}$ is an eigenvalue of T^{*}.

Since $\left(T^{*}\right)^{*}=T$, this also shows that any eigenvalue of T^{*} is also the conjugate of an eigenvalue of T. Therefore λ is an eigenvalue of T iff $\bar{\lambda}$ is an eigenvalue of T^{*}.

Exercise 7.A. 4 Suppose $T \in \mathcal{L}(V, W)$. Prove that
(a) T is injective if and only if T^{*} is surjective;
(b) T is surjective if and only if T^{*} is injective.

Proof. First we prove (a)

$$
\begin{aligned}
T \text { is injective } & \Longleftrightarrow \text { Null } \mathrm{T}=0 \\
& \Longleftrightarrow\left(\text { Range } T^{*}\right)^{\perp}=0 \\
& \Longleftrightarrow \text { Range } T^{*}=W \\
& \Longleftrightarrow T \text { is surjective }
\end{aligned}
$$

Where the second line comes from $7.7(c)$.
Note that (a) has been proved, (b) follows immediately by replacing T with T^{*} in (a).

Question 1. Suppose $\left(e_{1}, \ldots, e_{m}\right)$ is an orthonormal list of vectors in V. Let $v \in V$. Prove that

$$
\|v\|^{2}=\left|\left\langle v, e_{1}\right\rangle\right|^{2}+\cdots+\left|\left\langle v, e_{m}\right\rangle\right|^{2}
$$

if and only if $v \in \operatorname{span}\left(e_{1}, \ldots, e_{m}\right)$.

Proof. Denote $\operatorname{span}\left(e_{1}, \ldots, e_{m}\right)$ by U. Then we can write every vector v in V as $u+w$ with $u \in U$ and $w \in U^{\perp}$. So we have

$$
\|v\|^{2}=\langle u+w, u+w\rangle=\langle u, u\rangle+\langle w, w\rangle=\|u\|^{2}+\|w\|^{2}
$$

The second equality holds since $(u, w)=(w, u)=0$.
Then, since $\left(e_{1}, \ldots, e_{m}\right)$ is an orthonormal basis of U. We can find a_{1}, \ldots, a_{m} such that $u=a_{1} e_{1}+\cdots+a_{m} e_{m}$. Therefore we have

$$
\begin{aligned}
\|u\|^{2} & =\left\langle a_{1} e_{1}+\cdots+a_{m} e_{m}, a_{1} e_{1}+\cdots+a_{m} e_{m}\right\rangle \\
& =\sum_{i, j=1}^{m}\left\langle a_{i} e_{i}, a_{j} e_{j}\right\rangle \\
& =\sum_{i, j=1}^{m} a_{i} \overline{a_{j}}\left\langle e_{i}, e_{j}\right\rangle
\end{aligned}
$$

Since e_{i} and e_{j} are orthogonal if $i \neq j$, and since $\left\langle e_{i}, e_{i}\right\rangle=1$, we get

$$
\|u\|^{2}=\left|a_{1}\right|^{2}+\cdots+\left|a_{m}\right|^{2}
$$

On the other hand,

$$
\begin{aligned}
\left\langle v, e_{i}\right\rangle & =\left\langle u+w, e_{i}\right\rangle \\
& =\left\langle a_{1} e_{1}+\cdots+a_{m} e_{m}+w, e_{i}\right\rangle \\
& =a_{i}
\end{aligned}
$$

Since e_{i} and w are orthogonal for every $i \in\{1,2 \ldots, m\}$, and since e_{i} and e_{j} are orthogonal if $i \neq j$.

So, $\left|\left\langle v, e_{i}\right\rangle\right|^{2}=\left|a_{i}\right|^{2}$ meaning that

$$
\begin{aligned}
\|v\|^{2} & =\|u\|^{2}+\|w\|^{2} \\
& =\left|a_{1}\right|^{2}+\cdots+\left|a_{m}\right|^{2}+\|w\|^{2} \\
& =\left|\left\langle v, e_{1}\right\rangle\right|^{2}+\cdots+\left|\left\langle v, e_{m}\right\rangle\right|^{2}+\|w\|^{2}
\end{aligned}
$$

If $v \in \operatorname{span}\left(e_{1}, \ldots, e_{m}\right)$, then $v=a_{1} e_{1}+\cdots+a_{m} e_{m}$. That is, $w=0$. Thus $\|v\|^{2}=\left|\left\langle v, e_{1}\right\rangle\right|^{2}+\cdots+\left|\left\langle v, e_{m}\right\rangle\right|^{2}$.

If $\|v\|^{2}=\left|\left\langle v, e_{1}\right\rangle\right|^{2}+\cdots+\left|\left\langle v, e_{m}\right\rangle\right|^{2}$, then we have $\|w\|^{2}=0$, therefore $w=0$, so we have $v=u+0=u \in U$. By definition, $U=\operatorname{span}\left(e_{1}, \ldots, e_{m}\right)$, so $v \in$ $\operatorname{span}\left(e_{1}, \ldots, e_{m}\right)$.

Question 2. Let V be the vector space of infinite sequences of real numbers:

$$
V=\left\{\left(a_{1}, a_{2}, \ldots,\right) \mid a_{i} \in \mathbb{R}\right\}
$$

This is an infinite dimensional vector space over \mathbb{R}. Let $T \in \mathcal{L}(V)$ be the forward shift defined by

$$
T\left(a_{1}, a_{2}, \ldots\right)=\left(0, a_{1}, a_{2}, \ldots\right)
$$

a) The operator $T+I$ is given by

$$
(T+I)\left(a_{1}, a_{2}, a_{3}, \ldots\right)=\left(a_{1}, a_{1}+a_{2}, a_{2}+a_{3}, \ldots\right)
$$

Find an inverse $(T+I)^{-1}$ for this operator.
b) For which values $\lambda \in \mathbb{R}$ is the operator $T-\lambda I$ non-invertible?
c) What are the eigenvalues of T ?
d) Explain the discrepancy between your answers to 2 and 3 .

Proof. a) The operator $T+I$ is given by

$$
(T+I)\left(a_{1}, a_{2}, a_{3}, \ldots\right)=\left(a_{1}, a_{1}+a_{2}, a_{2}+a_{3}, \ldots\right)
$$

Let

$$
S\left(a_{1}, a_{2}, a_{3}, \ldots\right)=\left(a_{1}, a_{2}-a_{1}, a_{3}-a_{2}+a_{1}, a_{4}-a_{3}+a_{2}-a_{1}, \ldots\right)
$$

This is the inverse of $T+I$. To see this, we compute $S(T+I)\left(a_{1}, a_{2}, \ldots\right)$:
$S\left(a_{1}, a_{1}+a_{2}, a_{2}+a_{3}, \ldots\right)=\left(a_{1},\left(a_{1}+a_{2}\right)-a_{1},\left(a_{2}+a_{3}\right)-\left(a_{1}+a_{2}\right)+a_{1}, \ldots\right)$
Thus $S(T+I) v=v$ for all $v \in V$. We also need to compute $(T+I) S\left(a_{1}, a_{2}, \ldots\right)$: $(T+I)\left(a_{1}, a_{2}-a_{1}, a_{3}-a_{2}+a_{1}, \ldots\right)=\left(a_{1},\left(a_{2}-a_{1}\right)+a_{1},\left(a_{3}-a_{2}+a_{1}\right)+\left(a_{2}-a_{1}\right), \ldots\right)$

Thus $(T+I) S v=v$ for all $v \in V$. Since $S(T+I)=(T+I) S=I$, we get that $S=(T+I)^{-1}$.
b) The operator $T-\lambda I$ is given by

$$
\left(T_{\lambda} I\right)\left(a_{1}, a_{2}, a_{3}, \ldots\right)=\left(-\lambda a_{1}, a_{1}-\lambda a_{2}, a_{2}-\lambda a_{3}, \ldots\right)
$$

Let

$$
S_{\lambda}=\left(-\frac{1}{\lambda} a_{1},-\frac{1}{\lambda^{2}} a_{1}-\frac{1}{\lambda} a_{2},-\frac{1}{\lambda^{3}} a_{1}-\frac{1}{\lambda^{2}} a_{2}-\frac{1}{\lambda} a_{3}, \ldots\right)
$$

For $\lambda \neq 0$, we will show that $S_{\lambda}=(T-\lambda I)^{-1}$. Indeed, if we write $S_{\lambda}\left(a_{1}, a_{2}, \ldots\right)=$ $\left(b_{1}, b_{2}, \ldots\right)$ then the $n^{t h}$ term of S_{λ} is $b_{n}=-\frac{1}{\lambda^{n}} a_{1}-\frac{1}{\lambda^{n-1}} a_{2}-\cdots-\frac{1}{\lambda} a_{n}$, which is in fact $\frac{1}{\lambda}\left(b_{n-1}-a_{n}\right)$. We can see b_{1}, b_{2}, \ldots all as functions from V to \mathbb{R}.

We apply S_{λ} to $(T-\lambda I)\left(a_{1}, a_{2}, \ldots\right)$. We have that $b_{1}\left(a_{1}, a_{2}, \ldots\right)$ is $-\frac{1}{\lambda}\left(-\lambda a_{1}\right)=$ a_{1}. The $n^{\text {th }}$ term of $(T-\lambda I)\left(a_{1}, a_{2}, \ldots\right)$ is $a_{n-1}-\lambda a_{n}$. Suppose $b_{n-1}(T-$ $\lambda I)\left(a_{1}, a_{2}, \ldots\right)=a_{n-1}$. Then

$$
b_{n}(T-\lambda I)\left(a_{1}, a_{2}, \ldots\right)=\frac{1}{\lambda}\left(b_{n-1}(T-\lambda I)\left(a_{1}, a_{2}, \ldots\right)-\left(a_{n-1}-\lambda a_{n}\right)\right)
$$

(because $\left.b_{n}\left(a_{1}, a_{2}, \ldots\right)=b_{n-1}-a_{n}\right)$

$$
=\frac{1}{\lambda}\left(a_{n-1}-\left(a_{n-1}-\lambda a_{n}\right)\right)
$$

(since by assumption, $\left.b_{n-1}(T-\lambda I)\left(a_{1}, \ldots\right)=a_{n}\right)$

$$
=a_{n}
$$

So by induction, $S_{\lambda}(T-\lambda I)=I$. This can be seen by direct computation for the first few terms:

$$
\begin{aligned}
& S_{\lambda}\left(-\lambda a_{1}, a_{1}-\lambda a_{2}, a_{2}-\lambda a_{3}, \ldots\right)= \\
& \begin{aligned}
&\left(a_{1},-\frac{1}{\lambda^{2}}\left(-\lambda a_{1}\right)-\frac{1}{\lambda}\left(a_{1}-\lambda a_{2}\right),-\frac{1}{\lambda^{3}}\left(-\lambda a_{1}\right)-\frac{1}{\lambda^{2}}\left(a_{1}-\lambda a_{2}\right)-\frac{1}{\lambda}\left(a_{2}-\lambda a_{3}\right), \ldots\right) \\
&=\left(a_{1}, a_{2}, a_{3}, \ldots\right)
\end{aligned}
\end{aligned}
$$

Next, we must show that $(T-\lambda I) S_{\lambda}\left(a_{1}, a_{2}, \ldots\right)=\left(a_{1}, a_{2}, \ldots\right)$. Once again, we use that the $n^{t h}$ term of $S_{\lambda}\left(a_{1}, a_{2}, \ldots\right)$ is $b_{n}=\frac{1}{\lambda}\left(b_{n-1}-a_{n}\right)$, and that the $n^{\text {th }}$ term of $(T-\lambda I)\left(a_{1}, a_{2}, \ldots\right)$ is $a_{n-1}-\lambda a_{n}$. Thus,
$(T-\lambda I)\left(S_{\lambda}\left(a_{1}, a_{2}, \ldots\right)\right)=(T-\lambda I)\left(b_{1}, b_{2}, \ldots\right)$
$=\left(-\lambda b_{1}, b_{1}-\lambda b_{2}, \ldots, b_{n-1}-\lambda b_{n}, \ldots\right)$
$=\left(-\lambda\left(-\frac{1}{\lambda} a_{1}\right), b_{1}-\lambda\left(\frac{1}{\lambda}\left(b_{1}-a_{n}\right)\right), \ldots, b_{n-1}-\lambda\left(\frac{1}{\lambda}\left(b_{n-1}-a_{n}\right)\right), \ldots\right)$
$=\left(a_{1}, a_{2}, \ldots, a_{n}, \ldots\right)$
Therefore $(T-\lambda I) S_{\lambda}=I$. Since $(T-\lambda I) S_{\lambda}=S_{\lambda}(T-\lambda I)=I, S_{\lambda}=(T-\lambda I)^{-1}$ for all $\lambda \neq 0$.

Thus $T-\lambda I$ is invertible for all $\lambda \neq 0$. However, for $\lambda=0$ we have $T-\lambda I=$ $T-0 I=T$, and T is not invertible. Indeed, the image of T is clearly contained in the subspace $\{(0, *, *, *, \ldots)\}$ of sequences whose first entry is 0 , so T is not surjective. Since T is not surjective, it cannot be bijective, so it cannot have an inverse even as a map of sets.
(However, note that if we let S be the backwards shift:

$$
S\left(a_{1}, a_{2}, a_{3}, \ldots\right)=\left(a_{2}, a_{3}, \ldots\right)
$$

Then applying S_{0} to T, we get

$$
\begin{aligned}
S\left(T\left(a_{1}, a_{2}, \ldots\right)\right) & =S\left(0, a_{1}, a_{2}, \ldots\right) \\
& =\left(a_{1}, a_{2}, \ldots\right)
\end{aligned}
$$

So $S T=I$, which might lead us to think that T is invertible.
However,

$$
\begin{aligned}
T\left(S\left(a_{1}, a_{2}, a_{3}, \ldots\right)\right) & =T\left(a_{2}, a_{3}, \ldots\right) \\
& =\left(0, a_{2}, a_{3}, \ldots\right)
\end{aligned}
$$

So $T S \neq I$, and so we see that S is not an inverse for T.
So $T-\lambda I$ is not invertible only for $\lambda=0$.
c) Suppose λ is an eigenvalue of T. Then $T\left(a_{1}, a_{2}, \ldots\right)=\lambda\left(a_{1}, a_{2}, \ldots\right)$ meaning that

$$
\left(0, a_{1}, a_{2}, \ldots\right)=\left(\lambda a_{1}, \lambda a_{2}, \ldots\right)
$$

This gives us that $\lambda a_{1}=0$, so either $\lambda=0$ or $a_{1}=0$. This equation also gives us $\lambda a_{n}=a_{n-1}$ for $n \geq 2$. If $\lambda=0$, then a_{1}, a_{2}, \ldots all equal zero. Thus λ is not an eigenvalue. If $a_{1}=0$ but $\lambda \neq 0$ then $\lambda a_{2}=a_{1}$ implies that $a_{2}=0$, and so on. So if $\lambda \neq 0$ then we also get that $a_{1}=a_{2}=\cdots=0$. Therefore T has no eigenvalues.
d) The discrepancy is that $T-\lambda I$ is not invertible when $\lambda=0$, but 0 is not an eigenvalue of T. In the finite-dimensional case, when an operator is not invertible, it is also not injective by Rank-Nullity. If $T-\lambda I$ were not injective that would mean that $(T-\lambda I) \neq\{0\}$, so λ would be an eigenvalue. However, V is infinite-dimensional. In the infinite-dimensional case, an operator can be not invertible, and still be injective because Rank-Nullity no longer holds (nor does it make sense.) T is an example of such an operator that is injective but not invertible. That is why we have that T is not invertible, but 0 is not an eigenvalue of T.

