Solutions by Guanyang Wang, with edits by Tom Church. Exercises from the book.

Exercise 6.C.4 Suppose U is the subspace of \mathbb{R}^4 defined by

$$U = \operatorname{span}((1, 2, 3, -4), (-5, 4, 3, 2))$$

Find an orthonormal basis of U and an orthonormal basis of U^{\perp}

Answer. Notice that the list (1,2,3,-4) and (-5,4,3,2) is linearly independent since neither vector is the scalar multiple of the other. Thus we will extend the list (1,2,3,-4), (-5,4,3,2) to a basis

$$(1,2,3,-4), (-5,4,3,2), w_1, w_2$$

of \mathbb{R}^4 and then apply the Gram-Schmidt Procedure.

To extend (1,2,3,-4),(-5,4,3,2) to a basis of \mathbb{R}^4 , we follow the idea of the proof of 2.33. Thus we start with the list

$$(1, 2, 3, -4), (-5, 4, 3, 2), (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)$$

which spans \mathbb{R}^4 . We need to apply the Gram-Schmidt Procedure anyway, and thus in this case the easiest thing to do is to start the Gram-Schmidt Procedure and throw out any vectors that would lead to division by 0(indicating linear independence), or stop when we reach a list of length four.

To get started, we have

$$e_1 = \frac{(1,2,3,-4)}{\|(1,2,3,-4)\|} = \left(\frac{1}{\sqrt{30}}, \sqrt{\frac{2}{15}}, \sqrt{\frac{3}{10}}, -2\sqrt{\frac{2}{15}}\right).$$

Next,

$$\begin{split} e_2 &= \frac{(-5,4,3,2) - \langle (-5,4,3,2), e_1 \rangle e_1}{\|(-5,4,3,2) - \langle (-5,4,3,2), e_1 \rangle e_1 \|} \\ &= \left(-\frac{77}{\sqrt{12030}}, 28\sqrt{\frac{2}{6015}}, 13\sqrt{\frac{3}{4010}}, 19\sqrt{\frac{2}{6015}} \right). \end{split}$$

Next,

$$\begin{split} e_3 &= \frac{(1,0,0,0) - \langle (1,0,0,0), e_1 \rangle e_1 - \langle (1,0,0,0), e_2 \rangle e_2}{\|(1,0,0,0) - \langle (1,0,0,0), e_1 \rangle e_1 - \langle (1,0,0,0), e_2 \rangle e_2 \|} \\ &= \left(\sqrt{\frac{190}{401}}, \frac{117}{\sqrt{76190}}, 6\sqrt{\frac{10}{7619}}, \frac{151}{\sqrt{76190}}\right). \end{split}$$

There is no division by 0 here, and no linear dependence yet. Next.

$$\begin{split} e_4 &= \frac{(0,1,0,0) - \langle (0,1,0,0), e_1 \rangle e_1 - \langle (0,1,0,0), e_2 \rangle e_2 - \langle (0,1,0,0), e_3 \rangle e_3}{\|(0,1,0,0) - \langle (0,1,0,0), e_1 \rangle e_1 - \langle (0,1,0,0), e_2 \rangle e_2 - \langle (0,1,0,0), e_3 \rangle e_3 \|} \\ &= \left(0, \frac{9}{\sqrt{190}}, -\sqrt{\frac{10}{19}}, -\frac{3}{\sqrt{190}}\right). \end{split}$$

Again there is no division by 0 here, and thus no linear dependence yet.

Since \mathbb{R}^4 has dimension 4, we know that e_1, e_2, e_3, e_4 is a basis of \mathbb{R}^4 , and there is no need to continue the process further.

Thus, by the previous exercise,

$$\left(\frac{1}{\sqrt{30}}, \sqrt{\frac{2}{15}}, \sqrt{\frac{3}{10}}, -2\sqrt{\frac{2}{15}}\right), \left(-\frac{77}{\sqrt{12030}}, 28\sqrt{\frac{2}{6015}}, 13\sqrt{\frac{3}{4010}}, 19\sqrt{\frac{2}{6015}}\right)$$

is an orthonormal basis of U and

$$\left(\sqrt{\frac{190}{401}}, \frac{117}{\sqrt{76190}}, 6\sqrt{\frac{10}{7619}}, \frac{151}{\sqrt{76190}}\right), \left(0, \frac{9}{\sqrt{190}}, -\sqrt{\frac{10}{19}}, -\frac{3}{\sqrt{190}}\right)$$

is an orthonormal basis of U^{\perp}

Exercise 6.C.6 Suppose U and W are finite-dimensional subspaces of V. Prove that $P_U P_W = 0$ if and only if $\langle u, w \rangle = 0$ for all $u \in U$ and all $w \in W$.

Proof. First suppose $P_U P_W = 0$. Suppose $w \in W$. Then

$$0 = P_U P_W w$$
$$= P_U w$$

Hence $w \in \text{null} P_U$. Now 6.55(e) shows that $w \in U^{\perp}$. Thus $\langle u, w \rangle = 0$ for all $u \in U$, completing one direction of the proof.

To prove the other direction, now suppose that $\langle u, w \rangle = 0$ for all $u \in U$ and all $w \in W$. Thus $U \subset W^{\perp}$ and $W \subset U^{\perp}$. If $w \in W$, then

$$(P_U P_W)(w) = P_U(P_W w) = P_U w = 0$$

where the last equality holds because $w \in U^{\perp}$. If $v \in W^{\perp}$, then

$$(P_U P_W)(v) = P_U(P_W v) = P_U 0 = 0.$$

Since every element in V can be written as the sum of a vector in W and a vector in W^{\perp} (by 6.47), the last two equations imply that $P_U P_W = 0$, as desired.

Exercise 6.C.11 In \mathbb{R}^4 , let

$$U = \mathrm{span}\big((1,1,0,0),(1,1,1,2)\big)$$

Find $u \in U$ s.t. ||u - (1, 2, 3, 4)|| is as small as possible.

Proof. First, we find an orthogonal basis for U. (So we won't bother to make the vectors have norm 1.) We keep $u_1 = (1,1,0,0)$. Then we subtract off u_1 from $v_2 = (1,1,1,2)$. We have that $v_2 - u_1 = (0,0,1,2)$ is perpendicular to u_1 . So we set $u_2 = (0,0,1,2)$. Now u_1,u_2 form a basis for U. Using this basis, we see that elements of U are vectors of the form (x,x,y,2y) for $x,y \in \mathbb{R}$.

So we want to find x and y s.t. the vector (x, x, y, 2y) - (1, 2, 3, 4) has the least norm. Noting that (x, x, y, 2y) - (1, 2, 3, 4) = (x - 1, x - 2, y - 3, 2y - 4), we compute

$$||(x-1, x-2, y-3, 2y-4)||^2 = (x-1)^2 + (x-2)^2 + (y-3)^2 + (2y-4)^2$$
$$= 2x^2 - 6x + 5 + 5y^2 - 22y + 16$$
$$= 2x^2 - 6x + 5y^2 - 22y + 21$$

This is minimized when $p(x) = 2x^2 - 6x$ and $q(y) = 5y^2 - 22y$ are both minimized. As their leading coefficients are positive, both of these quadratics go to infinity as x

and y go to infinity, respectively. Thus their local critical points are their respective minima. Taking derivatives, we get that

$$p'(x) = 4x - 6$$
 and $q'(y) = 10y - 22$

So their minima are at $x=\frac{3}{2}$ and $y=\frac{11}{5}$, respectively. Therefore the vector $u\in U$ s.t. ||u-(1,2,3,4)|| is smallest is $u=(\frac{3}{2},\frac{3}{2},\frac{11}{5},\frac{22}{5})$.

Here is another way to do this problem:

The vector $v_3 = (0, 1, 1, 0)$ is not in U because it is not of the correct form. Note that $(1, 2, 3, 4) = u_1 + 2u_2 + v_3$ so (1, 2, 3, 4) is in the span of u_1, u_2 and v_3 . We want to find a vector u_3 in the span of u_1, u_2 and v_3 s.t. u_3 is orthogonal to u_1 and u_2 . We have that

$$v_3 \cdot u_1 = 1 \text{ and } v_3 \cdot u_2 = 1$$

We also have

$$u_1 \cdot u_1 = 2$$
 and $u_2 \cdot u_2 = 5$

Thus $u_3 = v_3 - \frac{1}{2}u_1 - \frac{1}{5}u_2$ is orthogonal to u_1 and u_2 . We can see this directly by writing $u_3 = (-\frac{1}{2}, \frac{1}{2}, \frac{4}{5}, -\frac{2}{5})$. Since $(1, 2, 3, 4) = u_1 + 2u_2 + v_3$ and $v_3 = u_3 + \frac{1}{2}u_1 + \frac{1}{5}u_2$, we get that

$$(1,2,3,4) = \frac{3}{2}u_1 + \frac{11}{5}u_2 + u_3$$

= $\frac{3}{2}(1,1,0,0) + \frac{11}{5}(0,0,1,2) + (-\frac{1}{2},\frac{1}{2},\frac{4}{5},-\frac{2}{5})$

Now suppose $u \in U$ is the vector s.t. ||u - (1, 2, 3, 4)|| is minimal. Since $u \in U$, we can write $u = a_1u_1 + a_2u_2$ for some $a_1, a_2 \in \mathbb{R}$. Thus,

$$||u - (1, 2, 3, 4)|| = ||a_1u_1 + a_2u_2 - \frac{3}{2}u_1 + \frac{11}{5}u_2 + u_3||$$

$$= ||(a_1 - \frac{3}{2})u_1 + (a_2 - \frac{11}{5})u_2 - u_3||$$

$$= (a_1 - \frac{3}{2})^2||u_1||^2 + (a_2 - \frac{11}{5})^2||u_2||^2 + ||u_3||^2$$

because u_1,u_2,u_3 are orthogonal. This quantity is minimized when $a_1=\frac{3}{2}$ and $a_2=\frac{11}{5}$. Thus the $u\in U$ that is closest to (1,2,3,4) is $\frac{3}{2}u_1+\frac{11}{5}u_2=(\frac{3}{2},\frac{3}{2},\frac{11}{5},\frac{22}{5})$. \square

Exercise 7.A.1. Suppose n is a positive integer. Define $T \in \mathcal{L}(\mathbb{F}^n)$ by

$$T(z_1,...,z_n) = (0,z_1,...,z_{n-1})$$

Find a formula for $T^*(z_1,...,z_n)$

Proof. Fix $(z_1,...,z_n) \in \mathbb{F}^n$. Then for every $(w_1,...,w_n) \in \mathbb{F}^n$, we have

$$\langle (w_1, ..., w_n), T^*(z_1, ..., z_n) \rangle = \langle T(w_1, ..., w_n), (z_1, ..., z_n) \rangle$$

$$= \langle (0, w_1, ..., w_{n-1}), (z_1, ..., z_n) \rangle$$

$$= w_1 \overline{z_2} + ... + w_{n-1} \overline{z_n}$$

$$= \langle (w_1, ..., w_n), (z_2, ..., z_n, 0) \rangle.$$

Thus

$$T^*(z_1,...,z_n) = (z_2,...,z_n,0).$$

Exercise 7.A.2 Suppose $T \in \mathcal{L}(V)$ and $\lambda \in \mathbb{F}$. Prove that λ is an eigenvalue of T iff $\bar{\lambda}$ is an eigenvalue of T^* .

Proof. Suppose λ is an eigenvalue of T. Then there is some $v \neq 0$ s.t. $Tv = \lambda v$. Thus,

$$\langle Tv, w \rangle = \langle \lambda v, w \rangle$$

for each $w \in V$. Note that $\langle \lambda v, w \rangle = \lambda \langle v, w \rangle = \langle v, \overline{\lambda} w \rangle$ by linearity of the inner product. If T^* is the adjoint of T, then $\langle T(v), w \rangle = \langle v, T^*w \rangle$, so we have

$$\langle v, \bar{\lambda}w \rangle = \langle v, T^*w \rangle$$

for each w in W. By linearity of the inner product, this means that

$$\langle v, T^*w - \bar{\lambda}w \rangle = 0$$

for each $w \in W$. Thus, v is perpendicular to all vectors of the form $T^*w - \bar{\lambda}w$.

Let $S=T^*-\bar{\lambda}I$. The image of S is all vectors of the form $T^*w-\bar{\lambda}w$ so v is perpendicular to all vectors in the image of S. However, since v is nonzero, it cannot be perpendicular to itself $(\langle v,v\rangle>0$ is an axiom of inner products), so $v\not\in \mathrm{Image}S$. This shows that $\mathrm{Image}S\ne V$, so dim $\mathrm{Image}S$ must be strictly less than the dimension of the image of V. By Rank-Nullity, this implies that $\dim\mathrm{Null}S>0$. Therefore, there is some non-zero element in the null space of S. So there is some w s.t. $T^*w=\bar{\lambda}w$, meaning $\bar{\lambda}$ is an eigenvalue of T^* .

Since $(T^*)^* = T$, this also shows that any eigenvalue of T^* is also the conjugate of an eigenvalue of T. Therefore λ is an eigenvalue of T iff $\bar{\lambda}$ is an eigenvalue of T^* .

Exercise 7.A.4 Suppose $T \in \mathcal{L}(V, W)$. Prove that

- (a) T is injective if and only if T^* is surjective;
- (b) T is surjective if and only if T^* is injective.

Proof. First we prove (a)

$$T$$
 is injective \iff Null T = 0
 \iff (Range T^*) $^{\perp}$ = 0
 \iff Range T^* = W
 \iff T is surjective

Where the second line comes from 7.7(c).

Note that (a) has been proved, (b) follows immediately by replacing T with T^* in (a).

Question 1. Suppose (e_1, \ldots, e_m) is an orthonormal list of vectors in V. Let $v \in V$. Prove that

$$||v||^2 = |\langle v, e_1 \rangle|^2 + \dots + |\langle v, e_m \rangle|^2$$

if and only if $v \in \text{span}(e_1, \ldots, e_m)$.

Proof. Denote span (e_1, \ldots, e_m) by U. Then we can write every vector v in V as u + w with $u \in U$ and $w \in U^{\perp}$. So we have

$$||v||^2 = \langle u + w, u + w \rangle = \langle u, u \rangle + \langle w, w \rangle = ||u||^2 + ||w||^2$$

The second equality holds since (u, w) = (w, u) = 0.

Then, since (e_1, \ldots, e_m) is an orthonormal basis of U. We can find a_1, \ldots, a_m such that $u = a_1e_1 + \cdots + a_me_m$. Therefore we have

$$||u||^{2} = \langle a_{1}e_{1} + \dots + a_{m}e_{m}, a_{1}e_{1} + \dots + a_{m}e_{m} \rangle$$

$$= \sum_{i,j=1}^{m} \langle a_{i}e_{i}, a_{j}e_{j} \rangle$$

$$= \sum_{i,j=1}^{m} a_{i}\overline{a_{j}}\langle e_{i}, e_{j} \rangle$$

Since e_i and e_j are orthogonal if $i \neq j$, and since $\langle e_i, e_i \rangle = 1$, we get

$$||u||^2 = |a_1|^2 + \dots + |a_m|^2$$

On the other hand,

$$\langle v, e_i \rangle = \langle u + w, e_i \rangle$$

= $\langle a_1 e_1 + \dots + a_m e_m + w, e_i \rangle$
= a_i

Since e_i and w are orthogonal for every $i \in \{1, 2..., m\}$, and since e_i and e_j are orthogonal if $i \neq j$.

So, $|\langle v, e_i \rangle|^2 = |a_i|^2$ meaning that

$$||v||^2 = ||u||^2 + ||w||^2$$

$$= |a_1|^2 + \dots + |a_m|^2 + ||w||^2$$

$$= |\langle v, e_1 \rangle|^2 + \dots + |\langle v, e_m \rangle|^2 + ||w||^2$$

If $v \in \text{span}(e_1, ..., e_m)$, then $v = a_1 e_1 + ... + a_m e_m$. That is, w = 0. Thus $||v||^2 = |\langle v, e_1 \rangle|^2 + ... + |\langle v, e_m \rangle|^2$.

If $||v||^2 = |\langle v, e_1 \rangle|^2 + \dots + |\langle v, e_m \rangle|^2$, then we have $||w||^2 = 0$, therefore w = 0, so we have $v = u + 0 = u \in U$. By definition, $U = \operatorname{span}(e_1, \dots, e_m)$, so $v \in \operatorname{span}(e_1, \dots, e_m)$.

Question 2. Let V be the vector space of infinite sequences of real numbers:

$$V = \{(a_1, a_2, \dots,) \mid a_i \in \mathbb{R}\}\$$

This is an infinite dimensional vector space over \mathbb{R} . Let $T \in \mathcal{L}(V)$ be the forward shift defined by

$$T(a_1, a_2, \dots) = (0, a_1, a_2, \dots)$$

a) The operator T + I is given by

$$(T+I)(a_1,a_2,a_3,\dots)=(a_1,a_1+a_2,a_2+a_3,\dots)$$

Find an inverse $(T+I)^{-1}$ for this operator.

- b) For which values $\lambda \in \mathbb{R}$ is the operator $T \lambda I$ non-invertible?
- c) What are the eigenvalues of T?
- d) Explain the discrepancy between your answers to 2 and 3.

Proof. a) The operator T + I is given by

$$(T+I)(a_1,a_2,a_3,\dots)=(a_1,a_1+a_2,a_2+a_3,\dots)$$

Let

$$S(a_1, a_2, a_3, \dots) = (a_1, a_2 - a_1, a_3 - a_2 + a_1, a_4 - a_3 + a_2 - a_1, \dots)$$

This is the inverse of T+I. To see this, we compute $S(T+I)(a_1,a_2,...)$:

$$S(a_1, a_1 + a_2, a_2 + a_3, \dots) = (a_1, (a_1 + a_2) - a_1, (a_2 + a_3) - (a_1 + a_2) + a_1, \dots)$$

Thus S(T+I)v = v for all $v \in V$. We also need to compute $(T+I)S(a_1, a_2, \ldots)$:

$$(T+I)(a_1,a_2-a_1,a_3-a_2+a_1,\dots) = (a_1,(a_2-a_1)+a_1,(a_3-a_2+a_1)+(a_2-a_1),\dots)$$

Thus (T+I)Sv = v for all $v \in V$. Since S(T+I) = (T+I)S = I, we get that $S = (T+I)^{-1}$.

b) The operator $T - \lambda I$ is given by

$$(T_{\lambda}I)(a_1, a_2, a_3, \dots) = (-\lambda a_1, a_1 - \lambda a_2, a_2 - \lambda a_3, \dots)$$

Let

$$S_{\lambda} = \left(-\frac{1}{\lambda}a_1, -\frac{1}{\lambda^2}a_1 - \frac{1}{\lambda}a_2, -\frac{1}{\lambda^3}a_1 - \frac{1}{\lambda^2}a_2 - \frac{1}{\lambda}a_3, \dots\right)$$

For $\lambda \neq 0$, we will show that $S_{\lambda} = (T - \lambda I)^{-1}$. Indeed, if we write $S_{\lambda}(a_1, a_2, \dots) = (b_1, b_2, \dots)$ then the n^{th} term of S_{λ} is $b_n = -\frac{1}{\lambda^n} a_1 - \frac{1}{\lambda^{n-1}} a_2 - \dots - \frac{1}{\lambda} a_n$, which is in fact $\frac{1}{\lambda}(b_{n-1} - a_n)$. We can see b_1, b_2, \dots all as functions from V to \mathbb{R} .

We apply S_{λ} to $(T-\lambda I)(a_1, a_2, \ldots)$. We have that $b_1(a_1, a_2, \ldots)$ is $-\frac{1}{\lambda}(-\lambda a_1) = a_1$. The n^{th} term of $(T - \lambda I)(a_1, a_2, \ldots)$ is $a_{n-1} - \lambda a_n$. Suppose $b_{n-1}(T - \lambda I)(a_1, a_2, \ldots) = a_{n-1}$. Then

$$b_n(T-\lambda I)(a_1,a_2,\dots) = \frac{1}{\lambda}(b_{n-1}(T-\lambda I)(a_1,a_2,\dots) - (a_{n-1}-\lambda a_n))$$

 $(because \ b_n(a_1, a_2, \dots) = b_{n-1} - a_n)$

$$= \frac{1}{\lambda} (a_{n-1} - (a_{n-1} - \lambda a_n))$$

(since by assumption, $b_{n-1}(T - \lambda I)(a_1, \dots) = a_n$)

$$= a_r$$

 $=(a_1,a_2,a_3,\dots)$

So by induction, $S_{\lambda}(T - \lambda I) = I$. This can be seen by direct computation for the first few terms:

$$S_{\lambda}(-\lambda a_1, a_1 - \lambda a_2, a_2 - \lambda a_3, \dots) = (a_1, -\frac{1}{\lambda^2}(-\lambda a_1) - \frac{1}{\lambda}(a_1 - \lambda a_2), -\frac{1}{\lambda^3}(-\lambda a_1) - \frac{1}{\lambda^2}(a_1 - \lambda a_2) - \frac{1}{\lambda}(a_2 - \lambda a_3), \dots)$$

Next, we must show that $(T - \lambda I)S_{\lambda}(a_1, a_2, \dots) = (a_1, a_2, \dots)$. Once again, we use that the n^{th} term of $S_{\lambda}(a_1, a_2, \dots)$ is $b_n = \frac{1}{\lambda}(b_{n-1} - a_n)$, and that the n^{th} term of $(T - \lambda I)(a_1, a_2, \dots)$ is $a_{n-1} - \lambda a_n$. Thus,

$$(T - \lambda I)(S_{\lambda}(a_{1}, a_{2}, \dots)) = (T - \lambda I)(b_{1}, b_{2}, \dots)$$

$$= (-\lambda b_{1}, b_{1} - \lambda b_{2}, \dots, b_{n-1} - \lambda b_{n}, \dots)$$

$$= (-\lambda (-\frac{1}{\lambda}a_{1}), b_{1} - \lambda (\frac{1}{\lambda}(b_{1} - a_{n})), \dots, b_{n-1} - \lambda (\frac{1}{\lambda}(b_{n-1} - a_{n})), \dots)$$

$$= (a_{1}, a_{2}, \dots, a_{n}, \dots)$$

Therefore $(T - \lambda I)S_{\lambda} = I$. Since $(T - \lambda I)S_{\lambda} = S_{\lambda}(T - \lambda I) = I$, $S_{\lambda} = (T - \lambda I)^{-1}$ for all $\lambda \neq 0$.

Thus $T-\lambda I$ is invertible for all $\lambda \neq 0$. However, for $\lambda=0$ we have $T-\lambda I=T-0I=T$, and T is not invertible. Indeed, the image of T is clearly contained in the subspace $\{(0,*,*,*,*,\ldots)\}$ of sequences whose first entry is 0, so T is not surjective. Since T is not surjective, it cannot be bijective, so it cannot have an inverse even as a map of sets.

(However, note that if we let S be the backwards shift:

$$S(a_1, a_2, a_3, \dots) = (a_2, a_3, \dots)$$

Then applying S_0 to T, we get

$$S(T(a_1, a_2, \dots)) = S(0, a_1, a_2, \dots)$$

= (a_1, a_2, \dots)

So ST = I, which might lead us to think that T is invertible. However,

$$T(S(a_1, a_2, a_3, \dots)) = T(a_2, a_3, \dots)$$

= $(0, a_2, a_3, \dots)$

So $TS \neq I$, and so we see that S is not an inverse for T.

So $T - \lambda I$ is not invertible only for $\lambda = 0$.

c) Suppose λ is an eigenvalue of T. Then $T(a_1, a_2, ...) = \lambda(a_1, a_2, ...)$ meaning that

$$(0, a_1, a_2, \dots) = (\lambda a_1, \lambda a_2, \dots)$$

This gives us that $\lambda a_1 = 0$, so either $\lambda = 0$ or $a_1 = 0$. This equation also gives us $\lambda a_n = a_{n-1}$ for $n \geq 2$. If $\lambda = 0$, then a_1, a_2, \ldots all equal zero. Thus λ is not an eigenvalue. If $a_1 = 0$ but $\lambda \neq 0$ then $\lambda a_2 = a_1$ implies that $a_2 = 0$, and so on. So if $\lambda \neq 0$ then we also get that $a_1 = a_2 = \cdots = 0$. Therefore T has no eigenvalues.

d) The discrepancy is that $T - \lambda I$ is not invertible when $\lambda = 0$, but 0 is not an eigenvalue of T. In the finite-dimensional case, when an operator is not invertible, it is also not injective by Rank-Nullity. If $T - \lambda I$ were not injective that would mean that $(T - \lambda I) \neq \{0\}$, so λ would be an eigenvalue. However, V is infinite-dimensional. In the infinite-dimensional case, an operator can be not invertible, and still be injective because Rank-Nullity no longer holds (nor does it make sense.) T is an example of such an operator that is injective but not invertible. That is why we have that T is not invertible, but 0 is not an eigenvalue of T.