Math 113: Linear Algebra and Matrix Theory
 Thomas Church (tfchurch@stanford.edu)
 http://math.stanford.edu/~church/teaching/113-F15

Homework 7

Due Wednesday, November 11 in class.

Do all the following exercises and questions.
6C. 4
6C. 6
6 C .11
7A. 1
7 A. 2
7A. 4

Question 1. Suppose $\left(e_{1}, \ldots, e_{m}\right)$ is an orthonormal list of vectors in V. Let $v \in V$. Prove that

$$
\|v\|^{2}=\left|\left\langle v, e_{1}\right\rangle\right|^{2}+\cdots+\left|\left\langle v, e_{m}\right\rangle\right|^{2}
$$

if and only if $v \in \operatorname{span}\left(e_{1}, \ldots, e_{m}\right)$.

Question 2. Let V be the vector space of infinite sequences of real numbers:

$$
V=\left\{\left(a_{1}, a_{2}, a_{3}, \ldots\right) \mid a_{i} \in \mathbb{R}\right\}
$$

This is an infinite-dimensional vector space over \mathbb{R}. Consider the forwards shift on V : let $T \in \mathcal{L}(V)$ be the operator defined by

$$
T\left(a_{1}, a_{2}, a_{3}, \ldots\right)=\left(0, a_{1}, a_{2}, \ldots\right)
$$

(a) The operator $T+I$ is given by

$$
(T+I)\left(a_{1}, a_{2}, a_{3}, a_{4}, \ldots\right)=\left(a_{1}, a_{1}+a_{2}, a_{2}+a_{3}, a_{3}+a_{4}, \ldots\right) .
$$

Find an inverse $(T+I)^{-1}$ for this operator.
(b) For which values of $\lambda \in \mathbb{R}$ is the operator $T-\lambda I$ non-invertible? Try to prove your answer is correct; if you cannot prove it completely, give as much justification as you can.
(c) What are the eigenvalues of T ?
(d) Explain the discrepancy between your answers to (b) and (c).

