
Math 113 Homework 6 Solutions

Solutions by Guanyang Wang, with edits by Tom Church.
Exercises from the book.
Exercise 6.A.16 Suppose u, v ∈ V are such that

‖u‖ = 3, ‖u+ v‖ = 4, ‖u− v‖ = 6.

What number does ‖v‖ equal?

Answer. We will use the following two formulas.

||u+ v||2 = 〈u+ v, u+ v〉
= 〈u, u〉+ 〈u, v〉+ 〈v, u〉+ 〈v, v〉
= ||u||2 + 2〈u, v〉+ ||v||2

since 〈u, v〉 = 〈v, u〉 because V is over R.
And,

||u− v||2 = 〈u− v, u− v〉
= 〈u, u〉+ 〈u,−v〉+ 〈−v, u〉+ 〈−v,−v〉
= ||u||2 − 2〈u, v〉+ ||v||2

again where the simplifications are justified because V is over R.
Adding these two equations together, we get that

||u+ v||2 + ||u− v||2 = 2||u||2 + 2||v||2

(This is called the parallelogram identity. Think of u and v as the sides of the
parallelogram, and u+ v and u− v as its diagonals.)

We are given that ||u+ v|| = 4, ||u− v|| = 6 and ||u|| = 3. Thus,

16 + 36 = 18 + 2||v||2

implies that ||v||2 = 17. Therefore ||v|| =
√

17. �

Exercise 6.B.5 On P2(R), consider the inner product given by

〈p, q〉 =

∫ 1

0

p(x)q(x) dx

Apply the Gram-Schmidt Procedure to the basis 1, x, x2 to produce an orthonormal
basis of P2(R).

Proof. Denote v0 = 1, v1 = x and v2 = x2. We use the formula 6.31. This gives us

e0 =
v0
||v0||

so we need to compute the norm of v0. We have ||v0||2 = 〈v0, v0〉. So we use that

〈v0, v0〉 =

∫ 1

0

1(x)1(x)dx = 1

to see that ||v0|| = 1. Therefore

e0 = 1
1
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Next, we need to find a constant a1 s.t. v1−ae0 is perpendicular to e0. We have
that

〈v1 − a0e0, e0〉 =

∫ 1

0

(v1(x)− a0e0(x))e0(x)dx

=

∫ 1

0

(x− a0)1dx

=
1

2
− a0

Thus,

〈v1 − ae0, e0〉 = 0 ⇐⇒ a0 =
1

2

So f1(x) = x − 1
2 is perpendicular to e0. We need to scale it so that it has norm

one. First we compute ||f1(x)||2:

〈f1(x), f1(x)〉 =

∫ 1

0

(x− 1

2
)(x− 1

2
) dx =

1

12

Thus, ||f1(x)|| = 1√
12

. We want e1 = f1(x)
||f(x)||

. Therefore,

e1 =
√

12(x− 1

2
) =
√

3(2x− 1)

Lastly, we need to find constants a2, b2 s.t. v2 − a2e1 − b2e0 is perpendicular to
both e1 and e2. We have that

〈v2 − a2e1 − b2e0, e0〉 = 〈v2 − b2e0, e0〉
= 〈x2 − b2, 1〉

=

∫ 1

0

x2 − b2dx

=
1

3
− b2

So, b2 = 1
3 .

Next,

〈v2 − a2e1 − b2e0, e1〉 = 〈v2 − a2e1, e1〉
= 〈v2, e1〉 − a2

= 〈x2,
√

12(x− 1

2
)〉 − a2

=

∫ 1

0

x2
√

12(x− 1

2
) dx− a2

=
√

12

∫ 1

0

x3 − 1

2
x2dx− a2

=
√

12

(
1

4
− 1

6

)
− a2

=

√
12

12
− a2
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So 〈v2 − a2e1 − b2e0, e1〉 = 0 iff a2 =
√
12
12 . Note that a2e1 = x − 1

2 . Thus

f2 = v2 − a2e1 − b2e0 = x2 − x+ 1
6 is perpendicular to both e0 and e1. We want to

normalize f2 to get e2. So we compute its norm:

||f2||2 = 〈f2, f2〉

=

∫ 1

0

(x2 − x+
1

6
)2dx

=
1

180

Thus, ||f2|| = 1√
180

, so e2 = f2(x)
||f2(x)|| is

e2 =
√

180(x2 − x+
1

6
) =
√

5(1− 6x+ 6x2)

So the orthonormal basis we obtain via the Gram-Schmidt method is:

e0 = 1, e1 =
√

3(2x− 1), and e2 =
√

5(1− 6x+ 6x2). �

Exercise 6.B.7. Find a polynomial q ∈ P2(R) such that

p(
1

2
) =

∫ 1

0

p(x)q(x) dx

For every p ∈ P2(R)

Proof. We will use the orthonormal basis we found in Exercise 6.B.5. It was e0 =
1, e1 =

√
3(2x− 1) and e2 =

√
5(6x2− 6x+ 1). Any polynomials p(x) and q(x) can

be expressed as linear combinations of e0, e1 and e2. Suppose p(x), q(x) are written

p(x) = a0e0 + a1e1 + a2e2 and q(x) = b0e0 + b1e1 + b2e2

Since
∫ 1

0
p(x)q(x) dx is the inner product of p(x) and q(x), we want to find a q(x) s.t.

〈p(x), q(x)〉 = p(1/2) for each polynomial p(x). Since e0, e1, e2 are an orthonormal
basis,

〈p(x), q(x)〉 = 〈a0e0 + a1e1 + a2e2, b0e0 + b1e1 + b2e2〉
= a0b0 + a1b1 + a2b2

On the other hand, if p(x) = a0e0 + a1e1 + a2e2 then p(1/2) = a0−
√
5
2 a2. (We use

that e0(1/2) = 1, e1(1/2) = 0 and e2(1/2) =
√

5(− 1
2 ).)

Thus, let q(x) = b0e0 + b1e1 + b2e2 for b0 = 1, b1 = 0 and b2 = −
√
5
2 . So

q(x) = −15x2 + 15x− 3

2

Then 〈p(x), q(x)〉 = a0 −
√
5
2 a2. That is, p( 1

2 ) =
∫ 1

0
p(x)q(x)dx for each p(x) ∈

P2(R). �

Exercise 6.B.8 Find a polynomial q ∈ P2(R) such that∫ 1

0

p(x)(cosπx) dx =

∫ 1

0

p(x)q(x) dx.

for every p ∈ P2(R)
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Proof. We will use the orthonormal basis we found in Exercise 6.B.5. It was e0 =
1, e1 =

√
3(2x− 1) and e2 =

√
5(6x2− 6x+ 1). Any polynomials p(x) and q(x) can

be expressed as linear combinations of e0, e1 and e2. Suppose p(x), q(x) are written

p(x) = a0e0 + a1e1 + a2e2 and q(x) = b0e0 + b1e1 + b2e2

Since
∫ 1

0
p(x)q(x) dx is the inner product of p(x) and q(x), we want to find a q(x)

s.t. 〈p(x), q(x)〉 =
∫ 1

0
p(x) cos(πx) dx for each polynomial p(x). Since e0, e1, e2 are

an orthonormal basis,

〈p(x), q(x)〉 = 〈a0e0 + a1e1 + a2e2, b0e0 + b1e1 + b2e2〉
= a0b0 + a1b1 + a2b2

On the other hand, if p(x) = a0e0 + a1e1 + a2e2 then
∫ 1

0
p(x) cos(πx) dx = −4

√
3

π2 a1.

(We use that
∫ 1

0
e0(x) cos(πx) dx = 0,

∫ 1

0
e1(x) cos(πx) dx = −4

√
3

π2 and∫ 1

0
e2(x) cos(πx) dx = 0.)

Thus, let q(x) = b0e0 + b1e1 + b2e2 for b0 = 0, b1 = −4
√
3

π2 and b2 = 0. So

q(x) =
−24x+ 12

π2

Then 〈p(x), q(x)〉 = −4
√
3

π2 a1. That is,
∫ 1

0
p(x)(cosπx) dx =

∫ 1

0
p(x)q(x) dx for

each p(x) ∈ P2(R). �

Question 1. Let V be a finite-dimensional vector space over C, and let T ∈ L(V ).
Let U,W be nonzero subspaces s.t. V = U ⊕W . Assume U,W are invariant under
T , so we can restrict the operator T : V → V to an operator T |U : U → U and
similarly we can restrict T to an operator T |W : W →W .

a) Prove that if λ ∈ C is an eigenvalue of T , then either λ is an eigenvalue of T |U
or λ is an eigenvalue of T |W (or both).

Let f(x) be the minimal polynomial of T |U and let g(x) be the minimal
polynomial of T |W .

b) Prove that f(T )g(T ) = 0 in L(V ).
c) Prove that if f(x), g(x) have no shared roots, then f(x)g(x) is the minimal

polynomial of T .
d) Prove that if f(x), g(x) have a shared rood λ ∈ C then f(x)g(x) is not the

minimal polynomial of T .

Proof. a) Suppose λ is an eigenvalue of T . Then there is some v ∈ V s.t. Tv = λv
(and v 6= 0). Since V = U ⊕W , we can write v = u + w for some u ∈ U and
w ∈W . Thus Tv = Tu+ Tw, so Tv = λv implies that

Tu+ Tw = λu+ λw

Since U and W are invariant under T , Tu ∈ U and Tw ∈ W . We also have
that λu ∈ U and λw ∈W . Since V is the direct sum of U and W , there is only
one way to write any vector as a sum of an element of U and an element of W .
Therefore we must have that Tu = λu and Tw = λw.

Since v 6= 0, either u or w is non-zero. Suppose that u 6= 0. Then Tu = λu
implies T |Uu = λu. So λ is an eigenvalue for T |U . Otherwise, if u = 0 we must
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have w 6= 0. Then Tw = λw implies T |Ww = λw, so λ is an eigenvalue for T |W .
Therefore λ is an eigenvalue for either T |U or T |W (or both.)

b) Let f(x) be the minimal polynomial of T |U and let g(x) be the minimal poly-
nomial of T |W . We need to show that for any v ∈ V , f(T )g(T )v = 0.

Since f(x) is the minimal polynomial of T |U we know that f(T |U )(u) = 0 for
any u ∈ U . Moreover since T (u) = T |U (u) for any u ∈ U , this can be written
simply as f(T )(u) = 0 for any u ∈ U . Similarly, since g(x) is the minimal
polynomial for T |W , we have g(T )(w) = g(T |W )(w) = 0 for any w ∈W .

Since V = U ⊕W , any v ∈ V can be written as v = u + w for u ∈ U and
w ∈W . Therefore

f(T )g(T )(v) = f(T )g(T )](u+ w)

= f(T )[g(T )(u+ w)]

= f(T )[g(T )(u)] + f(T )[g(T )(w)]

= g(T )[f(T )(u)] + f(T )[g(T )(w)] (since f(T ) and g(T ) commute)

= 0 + 0 = 0,

as desired.
c) In this proof, we will frequently use the general theorem that if p(x) is the

minimal polynomial of a linear operator T , and if f(T ) = 0 for some other
polynomial f(x), then p(x) divides f(x).

Let h(x) = f(x)g(x). Let p(x) be the minimal polynomial of T . Since
h(T ) = 0, we have that p(x) divides h(x). In particular, the degree of h(x) is at
least the degree of p(x).

Note that if u ∈ U , f(T |U )g(T |U )(u) = f(T )g(T )(u) = 0, and the same holds
for w ∈ W . Thus h(T |U ) = 0 and h(T |W ) = 0. Since f(x) is the minimal
polynomial of T |U , we have that f(x) divides h(x). Likewise, g(x) divides h(x),
as well.

Since V is a vector space over C, we can write f(x), g(x) and p(x) in terms
of linear factors:

f(x) =

k∏
i=1

(x− λi)

where λ1, . . . , λk are the eigenvalues for T |U .

g(x) =

n∏
i=k+1

(x− λi)

where λk+1, . . . , λn are the eigenvalues for T |W .

p(x) =

m∏
i=1

(x− βi)

where β1, . . . , βm are the eigenvalues for T . Since the degree of h(x) is at least
the degree of p(x), m ≤ n.

Since f(x) divides p(x), every term (x− λi) for i = 1, . . . , k of f(x) is a term
of p(x), as well. Thus, we can renumber the βi s.t. βi = λi for i = 1, . . . , k.
Likewise, since g(x) divides p(x), every term (x−λi) for i = k+ 1, . . . , n of g(x)
corresponds to a term (x − βji in p(x). Since T |U and T |W have no common
eigenvalues, no λi for i = k + 1, . . . , n corresponds any of β1, . . . , βk. Thus, we
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can renumber βk+1, . . . , βm s.t. λi = βi for i = k + 1, . . . , n. In particular,
m ≥ n.

Therefore, m = n, so the degree of h(x) equals the degree of p(x). Since
f(x), g(x) are minimal polynomials, they are monic. Thus h(x) = f(x)g(x) is
a monic polynomial. Since h(x) and p(x) are both monic and have the same
degree, they are equal.

d) Prove that if f(x), g(x) have a shared root λ ∈ C then f(x)g(x) is not the
minimal polynomial of T .

Suppose f(x), g(x) have a shared root λ ∈ C. Again, let

f(x) =

k∏
i=1

(x− λi)

where λ1, . . . , λk are the eigenvalues for T |U .

g(x) =

n∏
i=k+1

(x− λi)

where λk+1, . . . , λn are the eigenvalues for T |W .
Up to renumbering, we can assume that λ1 = λn. Then consider the polyno-

mial

h(x) =

n−1∏
i=1

(x− λi)

where we multiply f(x) and g(x) but get rid of the last factor (x − λn). Then
f(x) and g(x) both still divide h(x). So, there are polynomials a(x) and b(x)
s.t. h(x) = a(x)f(x) = b(x)g(x).

We claim that h(T ) = 0. First, suppose u ∈ U . Then h(T )(u) = a(T )f(T )(u).
Since f is the minimal polynomial of T |U , f(T )(u) = 0. Thus a(T )(f(T )(u)) =
0, so h(T )(u) = 0. Likewise, since g(x) is the minimal polynomial of T |W ,
g(T )(w) = 0 for any w ∈ W . Thus h(T )(w) = 0. Let v ∈ V . We can write
v = u+ w for u ∈ U and w ∈W . Then

h(T )(v) = h(T )(u+ w)

= h(T )(u) + h(T )(w)

= 0

Therefore, h(T ) = 0. Since the degree of h(T ) is one less than the degree of
f(x)g(x), and h(T ) = 0, f(x)g(x) cannot be the minimal polynomial of T . �

Question 2. Let V be an inner product space over R, and suppose that T ∈ L(V )
satisfies ‖Tv‖ = ‖v‖ for all v ∈ V . Prove that T has at most two eigenvalues.

Proof. For any eigenvalue λ of T , we can find an eigenvector v of T corresponding
to λ. So we have

‖Tv‖ = |λ| · ‖v‖ = ‖v‖
Since v 6= 0, we must have |λ| = 1. But V is an inner product space over R,

and the only real numbers with absolute value 1 are 1 and −1. Therefore the only
possible eigenvalues are λ = 1 and λ = −1; in particular, T can have at most 2
eigenvalues. �
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Question 3. Fix an integer n ≥ 1, and let V = Cn with the standard inner
product. We let R : V → V be the operator defined by

R(a1, . . . , an) = (a2, . . . , an, a1)

a) Set p(x) = xn − 1. Prove that p(R) = 0. Convince yourself that p(x) = xn − 1
is in fact the minimal polynomial of R.

b) Since p(x) has n distinct roots, we know that R is diagonalizable. Diagonalize
R by finding a basis of eigenvectors v1, . . . , vn for Cn satisfying

R(vi) = ωivi and ||vi|| = 1

c) Prove that if µ ∈ C satisfies µn = 1 but µ 6= 1, then 1 +µ+µ2 + · · ·+µn−1 = 0.
d) Prove your basis v1, . . . , vn is orthonormal.
e) If v = (a1, . . . , an) is written as v = b1v1 + · · · + bnvn, give a formula for the

coefficient bi in terms of the coordinates a1, . . . , an.
f) If v = (a1, . . . , an) is written as v = b1v1 + · · · + bnvn, give a formula for the

coordinate ai in terms of the coefficients b1, . . . , bn.
g) If v = (a1, . . . , an) is written as v = b1v1 + · · ·+bnvn, prove that the coordinates

a1, . . . , an and the coefficients b1, . . . , bn satisfy the relation

|a1|2 + · · ·+ |an|2 = |b1|2 + · · ·+ |bn|2

Proof. (a) For any element a = (a1, . . . , an) ∈ Cn, we just need to prove that
Rna = a. Since Ra = R(a1, . . . , an) = (a2, . . . , an, a1), we have

R2a = R(a2, . . . , an, a1) = R(a3, . . . , an, a1, a2).

Repeating this n times, we conclude that

Rn−1a = (an, a1, . . . , an−1)

Rna = R(Rn−1a) = R(an, a1, . . . , an−1) = (a1, . . . , an) = a.

Therefore we have (Rn − I)a = 0. Therefore p(R) = 0, as desired.
(b) We just need to show that if f(x) is a nonzero polynomial of degree < n, then

f(R) 6= 0. Write this polynomial as f(x) = c0 + c1x + c2x
2 + · · · + cn−1x

n−1

for some coefficients c0, c1, c2, . . . , cn−1 ∈ C. [Note that we have not bothered
to assume that f(x) is monic; it’s a bit easier that way, notationally.]

Consider the vector v = (0, . . . , 0, 1). We will show that f(R) is not the zero
operator by showing that f(R)v is not the zero vector. From the computations
above, we know that

Rv = (0, . . . , 0, 1, 0), R2v = (0, . . . , 1, 0, 0), . . . Rn−1v = (1, 0, . . . , 0).

Therefore f(R)v is equal to(
c0 + c1R+ c2R

2 + · · ·+ cn−1R
n−1)v = c0v + c1Rv + c2R

2v + · · ·+ cn−1R
n−1v

= (0, . . . , 0, 0, c0)

+ (0, . . . , 0, c1, 0)

+ (0, . . . , c2, 0, 0)

+ · · ·
+ (cn−1, . . . , 0, 0, 0)

= (cn−1, . . . , c3, c2, c1, c0)
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Since f(x) is a nonzero polynomial, at least one of the coefficients ci must be
nonzero, so this vector f(R)v = (cn−1, . . . , c3, c2, c1, c0) must be nonzero. This
proves that n is the smallest possible degree of a polynomial with f(R) = 0;
since p(x) has degree n, this shows that p(x) = xn−1 is the minimal polynomial
of R.

(c) Let wi = (ωi, ω2i, . . . , ωni) for i = 1, . . . , n. So, w1 = (ω, ω2, . . . , ωn−1, 1),
w2 = (ω2, ω4, . . . , ω2n−2, 1) and so on until wn = (1, 1, . . . , 1). We claim that
these are eigenvectors s.t. wi has eigenvalue ωi. We can compute what R does
to these vectors:

R(ωi, ω2i, . . . , ωni) = (ω2i, ω3i, . . . , ωni, ωi)

Since ωi · ωki = ω(k+1)i, we see that R(wi) = ωi · wi as desired. (Note that
ωni = (ωn)i = 1i = 1, so in the last coordinate we have ωi · ωni = ωi.) Since
1, ω, . . . , ωn−1 are distinct eigenvalues, w1, . . . , wn are linearly independent. As
there are n of them, they must form a basis for Cn.

Since |ω| = 1, we have that |ωi| = 1i = 1 for all i. Thus for all i,

||wi||2 = |ωi|+ |ω2i|+ · · ·+ |ωni| = 1 + 1 + 1 + · · ·+ 1 = n.

This shows that each of our eigenvectors wi has length ||wi|| =
√
n. To get an

eigenbasis v1, . . . , vn with length 1, we set vi = 1√
n
wi. In conclusion, v1, . . . , vn

forms a basis for Cn s.t. ||vi|| = 1 for all i, and R is diagonal with respect to
this basis. �

(d) If µ 6= 1, then 1− µ is nonzero. If we multiply the sum 1 + µ+ µ2 + · · ·+ µn−1

by 1− µ, we get a telescoping sum:

(1− µ)(1 + µ+ µ2 + · · ·+ µn−1) = 1− µ+ µ− µ2 + µ2 − · · ·+ µn−1 − µn

= 1 − µn

But our assumption was that µn = 1, so 1−µn = 0. Since 1+µ+µ2+· · ·+µn−1
becomes 0 when multiplied by the nonzero constant 1 − µ, it must be that
1 + µ+ µ2 + · · ·+ µn−1 = 0. �

(e) We have already shown that ||vi|| = 1 for all i. Now we need to show that
〈vi, vj〉 = 0 for all i 6= j. So suppose that i 6= j. Then

〈vi, vj〉 =
1

n

(
ωi · ωj + ω2i · ω2j + · · ·+ ωni · ωnj

)
Since ω is on the unit circle, we know that |ω| = 1, or in other words ω ·ω = 1.
This shows that ω = ω−1, and so in general ωkj = ω−kj . Thus,

〈vi, vj〉 =
1

n

(
ωi−j + ω2(i−j) + · · ·+ ωn(i−j)

)
Set µ = ωi−j ; note that the last term above is µn = ωn(i−j) = (ωn)i−j =
1i−j = 1, so the sum inside the parentheses is

µ+ µ2 + · · ·+ µn−1 + µn = µ+ µ2 + · · ·+ µn−1 + 1.

Since i 6= j we know that µ 6= 1, so part c) implies that the sum inside the
parentheses is 0:

〈vi, vj〉 =
1

n
(1 + µ+ µ2 + · · ·+ µn−1) =

1

n
· 0 = 0.

Therefore 〈vi, vj〉 = 0 for all i 6= j, demonstrating that the vectors v1, . . . , vn
form an orthonormal basis for Cn. �
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(f) If v = b1v1 + · · ·+ bnvn, then 〈v, vi〉 = bi since v1, . . . , vn form an orthonormal
basis for Cn. Thus,

bi = 〈(a1, a2, . . . , an),
1√
n

(ωi, . . . , ωni)〉

=
1√
n

(
a1ω

−i + a2ω
−2i + · · ·+ anω

−ni) =
1√
n

n∑
j=1

ω−ijaj

[TC: this is the analogue of the Fourier transform f̂(θ) = 1√
(2π)n

∫
e−iθxf(x)dx.]

(g) If v = b1v1 + · · ·+ bnvn, we can just compute

v = (a1, . . . , an) =
b1√
n

(ω, ω2, . . . , ωn)+

+
b2√
n

(ω2, ω4, . . . , ω2n)

+
...

+
bn√
n

(1, 1, 1, . . . , 1)

So looking at the ith component we have:

ai =
1√
n

(
b1ω

i + b2ω
2i + · · ·+ bnω

ni
)

=
1√
n

n∑
j=1

ωijbj

[TC: this is analogous to the inverse Fourier transform f(x) = 1√
(2π)n

∫
eiθxf̂(θ)dθ.]

�
(h) If we write v = (a1, . . . , an) then the standard inner product on Cn satisfies
||v||2 = |a1|2 + · · ·+ |an|2.

On the other hand, if we write v = b1v1 + · · ·+ bnvn, then

||v||2 = 〈b1v1 + · · ·+ bnvn, b1v1 + · · ·+ bnvn〉.
Since v1, . . . , vn is an orthonormal basis, this is just

〈b1v1 + · · ·+ bnvn, b1v1 + · · ·+ bnvn〉 = |b1|2 + · · ·+ |bn|2

Therefore we must have

|a1|2 + · · ·+ |an|2 = |b1|2 + · · ·+ |bn|2,
because both sides are equal to ||v||2. �


