MATH 113 HOMEWORK 6 SOLUTIONS

Solutions by Guanyang Wang, with edits by Tom Church.
Exercises from the book.
Exercise 6.A.16 Suppose u,v € V are such that

[ull =3, [lu+vl| = 4, [lu = vf| = 6.
What number does ||v|| equal?

Answer. We will use the following two formulas.
llu+2||? = (u+v,u+v)
= (u, u) + {(u,v) + (v,u) + (v, v)
= |[ul[® + 2{u, v) + |[v][?

since (u,v) = (v, u) because V is over R.
And,

llu —v||> = (u —v,u — )
= <u7u> + <u7 7U> + <7U7u> + <*7), *rU>
= [[u|[* = 2{u, v) + |[v]|*

again where the simplifications are justified because V is over R.
Adding these two equations together, we get that

[l + ol + [Ju = 0]]* = 2[[ul|* + 2[]v]|?

(This is called the parallelogram identity. Think of u and v as the sides of the
parallelogram, and u + v and u — v as its diagonals.)
We are given that ||u + v|| =4, ||u —v|| = 6 and ||u|| = 3. Thus,

16 + 36 = 18 4 2|[v]||?
implies that ||v||> = 17. Therefore ||v|| = V/17. O

Exercise 6.B.5 On P3(R), consider the inner product given by

(p,q) = / p(2)q(z) dx

0
Apply the Gram-Schmidt Procedure to the basis 1, x, 22 to produce an orthonormal
basis of P2(R).

Proof. Denote vg = 1,v; = = and vy = 2. We use the formula 6.31. This gives us
Vo

vl

€o
so we need to compute the norm of vg. We have ||vg||? = (vo,vo). So we use that
(vo,vg) = /1 1(z)1(z)dz =1
0
to see that ||vg|| = 1. Therefore
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Next, we need to find a constant a; s.t. v1 —aeg is perpendicular to eg. We have
that

(v1 — apeq, €9) = /0 (v1(z) — apeo(x))eg(z)dx

= /Ol(x —ag)ldx

1
==-—a
5 0

Thus,
1
(v1 — aep,e9) =0 < ag = 3

So fi(x) =z — % is perpendicular to eg. We need to scale it so that it has norm
one. First we compute || f1(z)||*:

(@ A@) = [ @= e =F)de =15

Thus, ||f1(z)|]| = —=. We want e; = Hfl 2777+ Therefore,

er =V12(z — %) =32z —1)

Lastly, we need to find constants as, bs s.t. vo — ase; — baeg is perpendicular to
both e; and e5. We have that

(va — ager — baeg, eg) = (v2 — baeg, €g)

= <I2 — bQ, 1>
1

:/ 22 — bodx
0
1

=—-—b
3 2

SO, b2 =3
Next,

V2 — (1261761>

112761> — a2

(v2 — ager — baeg,e1) =
1

22, V12(x — 5)) — as

22V12(x — %) dzx — as

o~~~
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So <’U2 — ag€1 — 6260,61> = 0 iff as = % Note that as€e1 = T — % Thus
2

fo =v9 —ase; —bseyg = x° —x + % is perpendicular to both ey and e;. We want to
normalize f5 to get es. So we compute its norm:

[ f2ll? = (fo, f2)
! 1
:/ (2 —z + =)%dx
0 6
_ b
180
Thus, ||f2|| = A= = 2l
us, 121l = 150 50 €2 = @ 8

1
es = V180(x? — z + 5= V5(1 — 62 + 622)
So the orthonormal basis we obtain via the Gram-Schmidt method is:

eo =1, e1 =V3(2z — 1), and ey = V/5(1 — 6 + 622). O

Exercise 6.B.7. Find a polynomial g € P>(R) such that

wg) = | plaata) ds
For every p € P2(R)

Proof. We will use the orthonormal basis we found in Exercise 6.B.5. It was eg =
1,e1 = v3(22 — 1) and ey = v/5(62% — 62 + 1). Any polynomials p(z) and ¢(z) can
be expressed as linear combinations of ey, e; and es. Suppose p(z), ¢(z) are written

p(x) = apep + are1 + azes and q(z) = boeg + brer + baes

Since fol p(x)q(x) dx is the inner product of p(x) and ¢(x), we want to find a g(z) s.t.
(p(x),q(x)) = p(1/2) for each polynomial p(x). Since eq,e1,es are an orthonormal
basis,
(p(x),q(x)) = (aoeo + arer + azea, boeg + bier + baea)
= aobo + a1b1 + CLng

On the other hand, if p(x) = agep + are; + azes then p(1/2) = ag — éag. (We use
that eg(1/2) =1, e1(1/2) = 0 and e2(1/2) = V5(—3).)

Thus, let g(x) = boeg + breg + baea for by = 1, by = 0 and by = —é. So

3
q(z) = —152% + 152 — 3

Then (p(x),q(x)) = ap — @ag. That is, p(3) = fol p(x)q(xz)dz for each p(z) €

Exercise 6.B.8 Find a polynomial g € P(R) such that

/0 " () (cos ) do = /0 ' p()a(e) d.

for every p € P2(R)
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Proof. We will use the orthonormal basis we found in Exercise 6.B.5. It was eg =
1,e; = V3(2z — 1) and ey = v/5(62% — 62 +1). Any polynomials p(z) and ¢(z) can
be expressed as linear combinations of e, e; and e3. Suppose p(z), ¢(z) are written

p(x) = apeo + arer + azes and q(z) = bpeg + breq + baes

Since fol p(x)q(x) dz is the inner product of p(x) and ¢(x), we want to find a g(x)
s.t. (p(x),q(x)) = fol p(z) cos(max) dz for each polynomial p(z). Since eg, e1, €2 are
an orthonormal basis,
(p(x),q(x)) = (aoeo + arer + azea, boeg + biey + baea)
= aobo + a1b1 + a2b2

On the other hand, if p(x) = agep + aje1 + azes then fol p(z) cos(mx) dx = %;/gal.

(We use that fol eo(z) cos(mz) dx = 0, fol e1(x) cos(mx) doe = _fr;/g and
fol ea(x) cos(mz) dx = 0.)
Thus, let g(x) = bpeg + bieg + baea for by =0, by = _fr;/g and by = 0. So

—24z + 12
() = ——%—

T2

Then (p(x),q(z)) = *f_‘r;/gal. That is, fol p(x)(cosmx)dr = fol p(x)q(z) dz for
each p(z) € P2(R). O

Question 1. Let V be a finite-dimensional vector space over C, and let T' € L(V).
Let U, W be nonzero subspaces s.t. V = U & W. Assume U, W are invariant under
T, so we can restrict the operator T': V' — V to an operator T|y : U — U and
similarly we can restrict 7' to an operator Ty : W — W.

a) Prove that if A € C is an eigenvalue of T', then either \ is an eigenvalue of 7|y

or A is an eigenvalue of T'|y (or both).
Let f(z) be the minimal polynomial of 7|y and let g(z) be the minimal

polynomial of T'|y .

b) Prove that f(T)g(T) =0in L(V).

¢) Prove that if f(x),g(z) have no shared roots, then f(z)g(z) is the minimal
polynomial of T

d) Prove that if f(z),g(z) have a shared rood A € C then f(x)g(x) is not the
minimal polynomial of T'.

Proof. a) Suppose A is an eigenvalue of T. Then there is some v € V s.t. Tv = v
(and v # 0). Since V. =U & W, we can write v = u 4+ w for some u € U and
w € W. Thus Tv = Tu + Tw, so Tv = Av implies that

Tu+Tw = u-+ \w

Since U and W are invariant under T, Tu € U and Tw € W. We also have
that Au € U and Aw € W. Since V is the direct sum of U and W, there is only
one way to write any vector as a sum of an element of U and an element of .
Therefore we must have that Tu = Au and Tw = Aw.

Since v # 0, either u or w is non-zero. Suppose that v # 0. Then Tu = Au
implies T|yu = Au. So A is an eigenvalue for T'|y. Otherwise, if u = 0 we must
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have w # 0. Then Tw = Aw implies T'|yyw = Aw, so A is an eigenvalue for T'|yy .
Therefore A is an eigenvalue for either T|yy or T|w (or both.)

Let f(z) be the minimal polynomial of T'|; and let g(x) be the minimal poly-
nomial of T'|y. We need to show that for any v € V., f(T)g(T)v = 0.

Since f(x) is the minimal polynomial of T'|y we know that f(7T'|¢)(u) = 0 for
any u € U. Moreover since T(u) = T|y(u) for any w € U, this can be written
simply as f(T)(u) = 0 for any v € U. Similarly, since g(x) is the minimal
polynomial for T'|w, we have g(T)(w) = g(T|w)(w) = 0 for any w € W.

Since V.=U @& W, any v € V can be written as v = v+ w for u € U and
w € W. Therefore

fF(M)g(T)(v) = f(T)g(T))(u + w)
= F(D)g(T)(u + w)]
= F(MD)g(T) ()] + f(T)[g(T)(w)]
=9 (W)] + f(D)[g(T)(w)]  (since f(T) and g(T') commute)

as desired.

In this proof, we will frequently use the general theorem that if p(x) is the
minimal polynomial of a linear operator T, and if f(T) = 0 for some other
polynomial f(z), then p(z) divides f(x).

Let h(xz) = f(x)g(z). Let p(z) be the minimal polynomial of T. Since
h(T) = 0, we have that p(x) divides h(z). In particular, the degree of h(x) is at
least the degree of p(z).

Note that if u € U, f(T|v)9(T|v)(w) = f(T)g(T)(u) = 0, and the same holds
for w € W. Thus h(T|y) = 0 and h(T|w) = 0. Since f(z) is the minimal
polynomial of T'|y7, we have that f(x) divides h(x). Likewise, g(z) divides h(x),
as well.

Since V is a vector space over C, we can write f(z),g(z) and p(x) in terms
of linear factors:

k
fl) =] -x)
i=1
where A1, ..., A\, are the eigenvalues for T'|.

n

g@) = [ @-x)
i=k+1
where Ag41,..., A, are the eigenvalues for 7|y .
p(z) = [ - 8)
i=1
where 1, ..., B are the eigenvalues for T'. Since the degree of h(z) is at least
the degree of p(x), m < n.
Since f(z) divides p(z), every term (z — \;) for i = 1,...,k of f(z) is a term
of p(x), as well. Thus, we can renumber the f5; s.t. 5; = A; for i = 1,... k.
Likewise, since g(x) divides p(x), every term (x — \;) for i = k+1,...,n of g(x)
corresponds to a term (x — f;, in p(z). Since T'|y and T'|w have no common
eigenvalues, no A; for i = k 4+ 1,...,n corresponds any of S1,...,0,. Thus, we



can renumber Bii1,...,0m s.t. A = B; for ¢ = k4 1,...,n. In particular,
m > n.

Therefore, m = n, so the degree of h(x) equals the degree of p(x). Since
f(z),g(z) are minimal polynomials, they are monic. Thus h(z) = f(x)g(z) is
a monic polynomial. Since h(z) and p(z) are both monic and have the same
degree, they are equal.

Prove that if f(z),g(z) have a shared root A € C then f(z)g(x) is not the
minimal polynomial of T'.
Suppose f(z), g(x) have a shared root A € C. Again, let

k

f@)=TI@=x)
i=1
where A1, ..., \; are the eigenvalues for T'|y.
g(z) = H (=)
i=k+1
where Agi1,..., A, are the eigenvalues for T'|yy .

Up to renumbering, we can assume that A\; = A\,. Then consider the polyno-
mial
n—1

hw) = [[ - M)
i=1
where we multiply f(x) and g(x) but get rid of the last factor (x — \,,). Then
f(z) and g(x) both still divide h(x). So, there are polynomials a(z) and b(x)
s.t. h(x) = a(z)f(x) = b(x)g(x).

We claim that h(T') = 0. First, suppose v € U. Then h(T)(u) = a(T) f(T)(u).
Since f is the minimal polynomial of T|y, f(T)(u) = 0. Thus a(T)(f(T)(u)) =
0, so h(T)(u) = 0. Likewise, since g(z) is the minimal polynomial of T'|w,
9(T)(w) = 0 for any w € W. Thus h(T)(w) = 0. Let v € V. We can write
v=u+wforu € U and w € W. Then

W(T)(v) = h(T)(u+w)
— h(T)(u) + h(T)(w)
=0

Therefore, h(T) = 0. Since the degree of h(T') is one less than the degree of
f(x)g(x), and h(T) =0, f(x)g(x) cannot be the minimal polynomial of . O

Question 2. Let V' be an inner product space over R, and suppose that T' € L(V)
satisfies | Tv|| = ||v|| for all v € V. Prove that T" has at most two eigenvalues.

Proof. For any eigenvalue \ of T', we can find an eigenvector v of T' corresponding
to A. So we have

[Twll = Al - [Joll = vl

Since v # 0, we must have |A\| = 1. But V is an inner product space over R,

and the only real numbers with absolute value 1 are 1 and —1. Therefore the only
possible eigenvalues are A = 1 and A\ = —1; in particular, T" can have at most 2
eigenvalues. ([l



Question 3. Fix an integer n > 1, and let V = C” with the standard inner
product. We let R : V' — V be the operator defined by
R(ai,...,an) = (ag,...,an,a1)

a) Set p(xz) = 2™ — 1. Prove that p(R) = 0. Convince yourself that p(z) = 2™ — 1
is in fact the minimal polynomial of R.
b) Since p(z) has n distinct roots, we know that R is diagonalizable. Diagonalize

R by finding a basis of eigenvectors vy, ..., v, for C" satisfying
R(v;) = w'v; and ||| = 1
c) Prove that if u € C satisfies u™ = 1 but p # 1, then 1+ p+ >+ +p"*~t = 0.
d) Prove your basis v, ..., v, is orthonormal.
e) If v = (ay,...,a,) is written as v = byjvy + -+ + b, v, give a formula for the
coefficient b; in terms of the coordinates a1, ..., a,.
f) If v = (a1,...,a,) is written as v = bjvy + -+ + by, give a formula for the
coordinate a; in terms of the coefficients by, ..., b,.
g) Ifv=(ay,...,a,) is written as v = byv; +- - - + b, vy, prove that the coordinates
ai,...,a, and the coefficients by, ..., b, satisfy the relation

jar [ 4 oo fanf? = [br* 4o [baf?

Proof. (a) For any element ¢ = (ay,...,a,) € C™, we just need to prove that
R"a = a. Since Ra = R(aq,...,a,) = (az,...,an,a1), we have
R2a = R(a‘Qa ceey Oy al) = R(a’3a sy Qn, A, (12)«

Repeating this n times, we conclude that
R lgq = (Qn,a1,. .. Gn-1)

R"a = R(R"'a) = R(an,a1,...,an_1) = (a1,...,a,) = a.

Therefore we have (R™ — I)a = 0. Therefore p(R) = 0, as desired.

(b) We just need to show that if f(z) is a nonzero polynomial of degree < n, then
f(R) # 0. Write this polynomial as f(x) = co + c12 + cox® + -+ + ¢p_12" 1
for some coefficients cg, ¢1,¢a,...,cp—1 € C. [Note that we have not bothered
to assume that f(x) is monic; it’s a bit easier that way, notationally.]

Consider the vector v = (0,...,0,1). We will show that f(R) is not the zero
operator by showing that f(R)v is not the zero vector. From the computations
above, we know that

Rv=(0,...,0,1,0),  R*»=(0,...,1,0,0),...  R"'v=(1,0,...,0).
Therefore f(R)v is equal to
(co+ R+ coR? + -+ cn,anfl)v =cov+c1Rv+ caR*v + -+ 4+ ¢ 1 R" v
= (0,...,0,0,¢p)

+(0,...,0,c1,0)
+(0,...,¢2,0,0)
_|_...
+ (en-1,-...,0,0,0)

- (cnflv .. '763702701700)



Since f(z) is a nonzero polynomial, at least one of the coefficients ¢; must be
nonzero, so this vector f(R)v = (¢p—1,...,¢s3,C2,¢1,co) must be nonzero. This
proves that n is the smallest possible degree of a polynomial with f(R) = 0;
since p(z) has degree n, this shows that p(x) = 2™ —1 is the minimal polynomial
of R.

Let w; = (w',w?,...,w™) for i = 1,...,n. So, w; = (w,w?,...,w" 1 1),
we = (w?,w?,...,w?" 2 1) and so on until w, = (1,1,...,1). We claim that
these are eigenvectors s.t. w; has eigenvalue w’. We can compute what R does
to these vectors:

i 2 ni 2 3i ni i
R(w*,w™, ..., w™) = (w”,w, ..., w™ W)
Since w' - wh = W*FTDT we see that R(w;) = w’ - w; as desired. (Note that
w" = (w")" = 1* = 1, so in the last coordinate we have w’ - w™ = w".) Since
1,w,...,w" ! are distinct eigenvalues, wq, . .., w, are linearly independent. As
) ) ) ) ) ) y p

there are n of them, they must form a basis for C".
Since |w| = 1, we have that |w?| = 1? =1 for all i. Thus for all i,

[[wi||* = |w!| + || 4+ + W =14+1+14 - +1=n.
This shows that each of our eigenvectors w; has length ||w;|| = /n. To get an
eigenbasis vy, ..., v, with length 1, we set v; = ﬁwl In conclusion, vy, ..., v,
forms a basis for C" s.t. |Jv;|| = 1 for all 4, and R is diagonal with respect to
this basis. (]
If 41 # 1, then 1 — p is nonzero. If we multiply the sum 1+ g+ p? 4 -+ p" !
by 1 — u, we get a telescoping sum:
Q=@+ p+p® 4+ +p™ )=l —ptp—p® +p® =g ="
But our assumption was that u™ = 1,s0 1—u" = 0. Since 1+pu-+p?+---+p"~!
becomes 0 when multiplied by the nonzero constant 1 — p, it must be that
T+p+p?+-+p~t=0. O
We have already shown that ||v;|] = 1 for all i. Now we need to show that
(vs,v5) =0 for all i # j. So suppose that ¢ # j. Then

1, .. . . , ,
<Ui7Uj> _ 7(wz U +w2z .52] _’__.__’_wnz .wn])
n

Since w is on the unit circle, we know that |w| = 1, or in other words w-w = 1.
This shows that @ = w™!, and so in general @7 = w=*7. Thus,

1. .. o o

(vi,v5) = = (w7 + W20 o4 wn(%ﬂ))

n
Set p = w'J; note that the last term above is p" = w7 = (W) =
1"77 =1, so the sum inside the parentheses is

T R o T T T T R e (A S

Since ¢ # j we know that pu # 1, so part c) implies that the sum inside the

parentheses is 0:

1 1
(i vj) = —(L ptp? 4o ") = —-0=0.
Therefore (v;,v;) = 0 for all ¢ # j, demonstrating that the vectors vy,..., v,

form an orthonormal basis for C™. O
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(f) If v =byvy + - - - + byvy, then (v,v;) = b; since vy, ..., v, form an orthonormal
basis for C™. Thus,

1 . )
bi = ((a1,a2,...,an), ﬁ(w’, cow™)
1 , . . 1 « .
= 7n (aw™ +aw™ + - + anw ") = —-= Zw*waj
j=1
1

[TC: this is the analogue of the Fourier transform f(0) = T [ e f(z)dx.]

(g) If v=">0yv1 + -+ byv,, we can just compute
by

v=1(a1,...,an) :%(MwQ,...,w")—k
b
+ 725((02’(*)4, ’w2n)
+:
+b—”(1 1,1 1)
\/E ) ) yr

So looking at the ith component we have:
1

NG

[TC: this is analogous to the inverse Fourier transform f(z) =

Q;

i 2% . m’_in iip
(blw + bow*" + - + byw )—\/ﬁzgw b;

Jj=

e e (0)do)
O
(h) If we write v = (aq,...,a,) then the standard inner product on C™ satisfies
[[o][> = Jar[? + - - + |an|*.
On the other hand, if we write v = byv1 + - - - + b, v, then
H/UH2 = <b1v1 + -+ bnvn; blvl +-- 4+ bnvn>
Since vy, ..., v, is an orthonormal basis, this is just
(b1v1 + -+ bpUn, brvr + -+ bpvn) = b2 4 4 |by?
Therefore we must have
Jar? + - lanf® = [y + -+ [ba?,

because both sides are equal to ||v]|?. O



