Math 113 Homework 6 Solutions

Solutions by Guanyang Wang, with edits by Tom Church.
Exercises from the book.
Exercise 6.A.16 Suppose $u, v \in V$ are such that

$$
\|u\|=3,\|u+v\|=4,\|u-v\|=6 .
$$

What number does $\|v\|$ equal?
Answer. We will use the following two formulas.

$$
\begin{aligned}
\|u+v\|^{2} & =\langle u+v, u+v\rangle \\
& =\langle u, u\rangle+\langle u, v\rangle+\langle v, u\rangle+\langle v, v\rangle \\
& =\|u\|^{2}+2\langle u, v\rangle+\|v\|^{2}
\end{aligned}
$$

since $\langle u, v\rangle=\langle v, u\rangle$ because V is over \mathbb{R}.
And,

$$
\begin{aligned}
\|u-v\|^{2} & =\langle u-v, u-v\rangle \\
& =\langle u, u\rangle+\langle u,-v\rangle+\langle-v, u\rangle+\langle-v,-v\rangle \\
& =\|u\|^{2}-2\langle u, v\rangle+\|v\|^{2}
\end{aligned}
$$

again where the simplifications are justified because V is over \mathbb{R}.
Adding these two equations together, we get that

$$
\|u+v\|^{2}+\|u-v\|^{2}=2\|u\|^{2}+2\|v\|^{2}
$$

(This is called the parallelogram identity. Think of u and v as the sides of the parallelogram, and $u+v$ and $u-v$ as its diagonals.)

We are given that $\|u+v\|=4,\|u-v\|=6$ and $\|u\|=3$. Thus,

$$
16+36=18+2\|v\|^{2}
$$

implies that $\|v\|^{2}=17$. Therefore $\|v\|=\sqrt{17}$.

Exercise 6.B.5 On $\mathcal{P}_{2}(\mathbb{R})$, consider the inner product given by

$$
\langle p, q\rangle=\int_{0}^{1} p(x) q(x) d x
$$

Apply the Gram-Schmidt Procedure to the basis $1, x, x^{2}$ to produce an orthonormal basis of $\mathcal{P}_{2}(\mathbb{R})$.

Proof. Denote $v_{0}=1, v_{1}=x$ and $v_{2}=x^{2}$. We use the formula 6.31. This gives us

$$
e_{0}=\frac{v_{0}}{\left\|v_{0}\right\|}
$$

so we need to compute the norm of v_{0}. We have $\left\|v_{0}\right\|^{2}=\left\langle v_{0}, v_{0}\right\rangle$. So we use that

$$
\left\langle v_{0}, v_{0}\right\rangle=\int_{0}^{1} 1(x) 1(x) d x=1
$$

to see that $\left\|v_{0}\right\|=1$. Therefore

$$
e_{0}=1
$$

Next, we need to find a constant a_{1} s.t. $v_{1}-a e_{0}$ is perpendicular to e_{0}. We have that

$$
\begin{aligned}
\left\langle v_{1}-a_{0} e_{0}, e_{0}\right\rangle & =\int_{0}^{1}\left(v_{1}(x)-a_{0} e_{0}(x)\right) e_{0}(x) d x \\
& =\int_{0}^{1}\left(x-a_{0}\right) 1 d x \\
& =\frac{1}{2}-a_{0}
\end{aligned}
$$

Thus,

$$
\left\langle v_{1}-a e_{0}, e_{0}\right\rangle=0 \Longleftrightarrow a_{0}=\frac{1}{2}
$$

So $f_{1}(x)=x-\frac{1}{2}$ is perpendicular to e_{0}. We need to scale it so that it has norm one. First we compute $\left\|f_{1}(x)\right\|^{2}$:

$$
\left\langle f_{1}(x), f_{1}(x)\right\rangle=\int_{0}^{1}\left(x-\frac{1}{2}\right)\left(x-\frac{1}{2}\right) d x=\frac{1}{12}
$$

Thus, $\left\|f_{1}(x)\right\|=\frac{1}{\sqrt{12}}$. We want $e_{1}=\frac{f_{1}(x)}{\left\|f_{(}(x)\right\|}$. Therefore,

$$
e_{1}=\sqrt{12}\left(x-\frac{1}{2}\right)=\sqrt{3}(2 x-1)
$$

Lastly, we need to find constants a_{2}, b_{2} s.t. $v_{2}-a_{2} e_{1}-b_{2} e_{0}$ is perpendicular to both e_{1} and e_{2}. We have that

$$
\begin{aligned}
\left\langle v_{2}-a_{2} e_{1}-b_{2} e_{0}, e_{0}\right\rangle & =\left\langle v_{2}-b_{2} e_{0}, e_{0}\right\rangle \\
& =\left\langle x^{2}-b_{2}, 1\right\rangle \\
& =\int_{0}^{1} x^{2}-b_{2} d x \\
& =\frac{1}{3}-b_{2}
\end{aligned}
$$

So, $b_{2}=\frac{1}{3}$.
Next,

$$
\begin{aligned}
\left\langle v_{2}-a_{2} e_{1}-b_{2} e_{0}, e_{1}\right\rangle & =\left\langle v_{2}-a_{2} e_{1}, e_{1}\right\rangle \\
& =\left\langle v_{2}, e_{1}\right\rangle-a_{2} \\
& =\left\langle x^{2}, \sqrt{12}\left(x-\frac{1}{2}\right)\right\rangle-a_{2} \\
& =\int_{0}^{1} x^{2} \sqrt{12}\left(x-\frac{1}{2}\right) d x-a_{2} \\
& =\sqrt{12} \int_{0}^{1} x^{3}-\frac{1}{2} x^{2} d x-a_{2} \\
& =\sqrt{12}\left(\frac{1}{4}-\frac{1}{6}\right)-a_{2} \\
& =\frac{\sqrt{12}}{12}-a_{2}
\end{aligned}
$$

So $\left\langle v_{2}-a_{2} e_{1}-b_{2} e_{0}, e_{1}\right\rangle=0$ iff $a_{2}=\frac{\sqrt{12}}{12}$. Note that $a_{2} e_{1}=x-\frac{1}{2}$. Thus $f_{2}=v_{2}-a_{2} e_{1}-b_{2} e_{0}=x^{2}-x+\frac{1}{6}$ is perpendicular to both e_{0} and e_{1}. We want to normalize f_{2} to get e_{2}. So we compute its norm:

$$
\begin{aligned}
\left\|f_{2}\right\|^{2} & =\left\langle f_{2}, f_{2}\right\rangle \\
& =\int_{0}^{1}\left(x^{2}-x+\frac{1}{6}\right)^{2} d x \\
& =\frac{1}{180}
\end{aligned}
$$

Thus, $\left\|f_{2}\right\|=\frac{1}{\sqrt{180}}$, so $e_{2}=\frac{f_{2}(x)}{\left\|f_{2}(x)\right\|}$ is

$$
e_{2}=\sqrt{180}\left(x^{2}-x+\frac{1}{6}\right)=\sqrt{5}\left(1-6 x+6 x^{2}\right)
$$

So the orthonormal basis we obtain via the Gram-Schmidt method is:

$$
e_{0}=1, \quad e_{1}=\sqrt{3}(2 x-1), \quad \text { and } e_{2}=\sqrt{5}\left(1-6 x+6 x^{2}\right)
$$

Exercise 6.B.7. Find a polynomial $q \in \mathcal{P}_{2}(\mathbb{R})$ such that

$$
p\left(\frac{1}{2}\right)=\int_{0}^{1} p(x) q(x) d x
$$

For every $p \in \mathcal{P}_{2}(\mathbb{R})$
Proof. We will use the orthonormal basis we found in Exercise 6.B.5. It was $e_{0}=$ $1, e_{1}=\sqrt{3}(2 x-1)$ and $e_{2}=\sqrt{5}\left(6 x^{2}-6 x+1\right)$. Any polynomials $p(x)$ and $q(x)$ can be expressed as linear combinations of e_{0}, e_{1} and e_{2}. Suppose $p(x), q(x)$ are written

$$
p(x)=a_{0} e_{0}+a_{1} e_{1}+a_{2} e_{2} \text { and } q(x)=b_{0} e_{0}+b_{1} e_{1}+b_{2} e_{2}
$$

Since $\int_{0}^{1} p(x) q(x) d x$ is the inner product of $p(x)$ and $q(x)$, we want to find a $q(x)$ s.t. $\langle p(x), q(x)\rangle=p(1 / 2)$ for each polynomial $p(x)$. Since e_{0}, e_{1}, e_{2} are an orthonormal basis,

$$
\begin{aligned}
\langle p(x), q(x)\rangle & =\left\langle a_{0} e_{0}+a_{1} e_{1}+a_{2} e_{2}, b_{0} e_{0}+b_{1} e_{1}+b_{2} e_{2}\right\rangle \\
& =a_{0} b_{0}+a_{1} b_{1}+a_{2} b_{2}
\end{aligned}
$$

On the other hand, if $p(x)=a_{0} e_{0}+a_{1} e_{1}+a_{2} e_{2}$ then $p(1 / 2)=a_{0}-\frac{\sqrt{5}}{2} a_{2}$. (We use that $e_{0}(1 / 2)=1, e_{1}(1 / 2)=0$ and $e_{2}(1 / 2)=\sqrt{5}\left(-\frac{1}{2}\right)$.)

Thus, let $q(x)=b_{0} e_{0}+b_{1} e_{1}+b_{2} e_{2}$ for $b_{0}=1, b_{1}=0$ and $b_{2}=-\frac{\sqrt{5}}{2}$. So

$$
q(x)=-15 x^{2}+15 x-\frac{3}{2}
$$

Then $\langle p(x), q(x)\rangle=a_{0}-\frac{\sqrt{5}}{2} a_{2}$. That is, $p\left(\frac{1}{2}\right)=\int_{0}^{1} p(x) q(x) d x$ for each $p(x) \in$ $\mathcal{P}_{2}(\mathbb{R})$ 。

Exercise 6.B.8 Find a polynomial $q \in \mathcal{P}_{2}(\mathbb{R})$ such that

$$
\int_{0}^{1} p(x)(\cos \pi x) d x=\int_{0}^{1} p(x) q(x) d x
$$

for every $p \in \mathcal{P}_{2}(\mathbb{R})$

Proof. We will use the orthonormal basis we found in Exercise 6.B.5. It was $e_{0}=$ $1, e_{1}=\sqrt{3}(2 x-1)$ and $e_{2}=\sqrt{5}\left(6 x^{2}-6 x+1\right)$. Any polynomials $p(x)$ and $q(x)$ can be expressed as linear combinations of e_{0}, e_{1} and e_{2}. Suppose $p(x), q(x)$ are written

$$
p(x)=a_{0} e_{0}+a_{1} e_{1}+a_{2} e_{2} \text { and } q(x)=b_{0} e_{0}+b_{1} e_{1}+b_{2} e_{2}
$$

Since $\int_{0}^{1} p(x) q(x) d x$ is the inner product of $p(x)$ and $q(x)$, we want to find a $q(x)$ s.t. $\langle p(x), q(x)\rangle=\int_{0}^{1} p(x) \cos (\pi x) d x$ for each polynomial $p(x)$. Since e_{0}, e_{1}, e_{2} are an orthonormal basis,

$$
\begin{aligned}
\langle p(x), q(x)\rangle & =\left\langle a_{0} e_{0}+a_{1} e_{1}+a_{2} e_{2}, b_{0} e_{0}+b_{1} e_{1}+b_{2} e_{2}\right\rangle \\
& =a_{0} b_{0}+a_{1} b_{1}+a_{2} b_{2}
\end{aligned}
$$

On the other hand, if $p(x)=a_{0} e_{0}+a_{1} e_{1}+a_{2} e_{2}$ then $\int_{0}^{1} p(x) \cos (\pi x) d x=\frac{-4 \sqrt{3}}{\pi^{2}} a_{1}$. (We use that $\int_{0}^{1} e_{0}(x) \cos (\pi x) d x=0, \int_{0}^{1} e_{1}(x) \cos (\pi x) d x=\frac{-4 \sqrt{3}}{\pi^{2}}$ and $\int_{0}^{1} e_{2}(x) \cos (\pi x) d x=0$.)

Thus, let $q(x)=b_{0} e_{0}+b_{1} e_{1}+b_{2} e_{2}$ for $b_{0}=0, b_{1}=\frac{-4 \sqrt{3}}{\pi^{2}}$ and $b_{2}=0$. So

$$
q(x)=\frac{-24 x+12}{\pi^{2}}
$$

Then $\langle p(x), q(x)\rangle=\frac{-4 \sqrt{3}}{\pi^{2}} a_{1}$. That is, $\int_{0}^{1} p(x)(\cos \pi x) d x=\int_{0}^{1} p(x) q(x) d x$ for each $p(x) \in \mathcal{P}_{2}(\mathbb{R})$.

Question 1. Let V be a finite-dimensional vector space over \mathbb{C}, and let $T \in \mathcal{L}(V)$. Let U, W be nonzero subspaces s.t. $V=U \oplus W$. Assume U, W are invariant under T, so we can restrict the operator $T: V \rightarrow V$ to an operator $\left.T\right|_{U}: U \rightarrow U$ and similarly we can restrict T to an operator $\left.T\right|_{W}: W \rightarrow W$.
a) Prove that if $\lambda \in \mathbb{C}$ is an eigenvalue of T, then either λ is an eigenvalue of $\left.T\right|_{U}$ or λ is an eigenvalue of $\left.T\right|_{W}$ (or both).

Let $f(x)$ be the minimal polynomial of $\left.T\right|_{U}$ and let $g(x)$ be the minimal polynomial of $\left.T\right|_{W}$.
b) Prove that $f(T) g(T)=0$ in $\mathcal{L}(V)$.
c) Prove that if $f(x), g(x)$ have no shared roots, then $f(x) g(x)$ is the minimal polynomial of T.
d) Prove that if $f(x), g(x)$ have a shared $\operatorname{rood} \lambda \in \mathbb{C}$ then $f(x) g(x)$ is not the minimal polynomial of T.

Proof. a) Suppose λ is an eigenvalue of T. Then there is some $v \in V$ s.t. $T v=\lambda v$ (and $v \neq 0$). Since $V=U \oplus W$, we can write $v=u+w$ for some $u \in U$ and $w \in W$. Thus $T v=T u+T w$, so $T v=\lambda v$ implies that

$$
T u+T w=\lambda u+\lambda w
$$

Since U and W are invariant under $T, T u \in U$ and $T w \in W$. We also have that $\lambda u \in U$ and $\lambda w \in W$. Since V is the direct sum of U and W, there is only one way to write any vector as a sum of an element of U and an element of W. Therefore we must have that $T u=\lambda u$ and $T w=\lambda w$.

Since $v \neq 0$, either u or w is non-zero. Suppose that $u \neq 0$. Then $T u=\lambda u$ implies $\left.T\right|_{U} u=\lambda u$. So λ is an eigenvalue for $\left.T\right|_{U}$. Otherwise, if $u=0$ we must
have $w \neq 0$. Then $T w=\lambda w$ implies $\left.T\right|_{W} w=\lambda w$, so λ is an eigenvalue for $\left.T\right|_{W}$. Therefore λ is an eigenvalue for either $\left.T\right|_{U}$ or $\left.T\right|_{W}$ (or both.)
b) Let $f(x)$ be the minimal polynomial of $\left.T\right|_{U}$ and let $g(x)$ be the minimal polynomial of $\left.T\right|_{W}$. We need to show that for any $v \in V, f(T) g(T) v=0$.

Since $f(x)$ is the minimal polynomial of $\left.T\right|_{U}$ we know that $f\left(\left.T\right|_{U}\right)(u)=0$ for any $u \in U$. Moreover since $T(u)=\left.T\right|_{U}(u)$ for any $u \in U$, this can be written simply as $f(T)(u)=0$ for any $u \in U$. Similarly, since $g(x)$ is the minimal polynomial for $\left.T\right|_{W}$, we have $g(T)(w)=g\left(\left.T\right|_{W}\right)(w)=0$ for any $w \in W$.

Since $V=U \oplus W$, any $v \in V$ can be written as $v=u+w$ for $u \in U$ and $w \in W$. Therefore

$$
\begin{aligned}
f(T) g(T)(v) & =f(T) g(T)](u+w) \\
& =f(T)[g(T)(u+w)] \\
& =f(T)[g(T)(u)]+f(T)[g(T)(w)] \\
& =g(T)[f(T)(u)]+f(T)[g(T)(w)] \quad \text { (since } f(T) \text { and } g(T) \text { commute) } \\
& =0+0=0
\end{aligned}
$$

as desired.
c) In this proof, we will frequently use the general theorem that if $p(x)$ is the minimal polynomial of a linear operator T, and if $f(T)=0$ for some other polynomial $f(x)$, then $p(x)$ divides $f(x)$.

Let $h(x)=f(x) g(x)$. Let $p(x)$ be the minimal polynomial of T. Since $h(T)=0$, we have that $p(x)$ divides $h(x)$. In particular, the degree of $h(x)$ is at least the degree of $p(x)$.

Note that if $u \in U, f\left(\left.T\right|_{U}\right) g\left(\left.T\right|_{U}\right)(u)=f(T) g(T)(u)=0$, and the same holds for $w \in W$. Thus $h\left(\left.T\right|_{U}\right)=0$ and $h\left(\left.T\right|_{W}\right)=0$. Since $f(x)$ is the minimal polynomial of $\left.T\right|_{U}$, we have that $f(x)$ divides $h(x)$. Likewise, $g(x)$ divides $h(x)$, as well.

Since V is a vector space over \mathbb{C}, we can write $f(x), g(x)$ and $p(x)$ in terms of linear factors:

$$
f(x)=\prod_{i=1}^{k}\left(x-\lambda_{i}\right)
$$

where $\lambda_{1}, \ldots, \lambda_{k}$ are the eigenvalues for $\left.T\right|_{U}$.

$$
g(x)=\prod_{i=k+1}^{n}\left(x-\lambda_{i}\right)
$$

where $\lambda_{k+1}, \ldots, \lambda_{n}$ are the eigenvalues for $\left.T\right|_{W}$.

$$
p(x)=\prod_{i=1}^{m}\left(x-\beta_{i}\right)
$$

where $\beta_{1}, \ldots, \beta_{m}$ are the eigenvalues for T. Since the degree of $h(x)$ is at least the degree of $p(x), m \leq n$.

Since $f(x)$ divides $p(x)$, every term $\left(x-\lambda_{i}\right)$ for $i=1, \ldots, k$ of $f(x)$ is a term of $p(x)$, as well. Thus, we can renumber the β_{i} s.t. $\beta_{i}=\lambda_{i}$ for $i=1, \ldots, k$. Likewise, since $g(x)$ divides $p(x)$, every term $\left(x-\lambda_{i}\right)$ for $i=k+1, \ldots, n$ of $g(x)$ corresponds to a term $\left(x-\beta_{j_{i}}\right.$ in $p(x)$. Since $\left.T\right|_{U}$ and $\left.T\right|_{W}$ have no common eigenvalues, no λ_{i} for $i=k+1, \ldots, n$ corresponds any of $\beta_{1}, \ldots, \beta_{k}$. Thus, we
can renumber $\beta_{k+1}, \ldots, \beta_{m}$ s.t. $\lambda_{i}=\beta_{i}$ for $i=k+1, \ldots, n$. In particular, $m \geq n$.

Therefore, $m=n$, so the degree of $h(x)$ equals the degree of $p(x)$. Since $f(x), g(x)$ are minimal polynomials, they are monic. Thus $h(x)=f(x) g(x)$ is a monic polynomial. Since $h(x)$ and $p(x)$ are both monic and have the same degree, they are equal.
d) Prove that if $f(x), g(x)$ have a shared root $\lambda \in \mathbb{C}$ then $f(x) g(x)$ is not the minimal polynomial of T.

Suppose $f(x), g(x)$ have a shared root $\lambda \in \mathbb{C}$. Again, let

$$
f(x)=\prod_{i=1}^{k}\left(x-\lambda_{i}\right)
$$

where $\lambda_{1}, \ldots, \lambda_{k}$ are the eigenvalues for $\left.T\right|_{U}$.

$$
g(x)=\prod_{i=k+1}^{n}\left(x-\lambda_{i}\right)
$$

where $\lambda_{k+1}, \ldots, \lambda_{n}$ are the eigenvalues for $\left.T\right|_{W}$.
Up to renumbering, we can assume that $\lambda_{1}=\lambda_{n}$. Then consider the polynomial

$$
h(x)=\prod_{i=1}^{n-1}\left(x-\lambda_{i}\right)
$$

where we multiply $f(x)$ and $g(x)$ but get rid of the last factor $\left(x-\lambda_{n}\right)$. Then $f(x)$ and $g(x)$ both still divide $h(x)$. So, there are polynomials $a(x)$ and $b(x)$ s.t. $h(x)=a(x) f(x)=b(x) g(x)$.

We claim that $h(T)=0$. First, suppose $u \in U$. Then $h(T)(u)=a(T) f(T)(u)$. Since f is the minimal polynomial of $\left.T\right|_{U}, f(T)(u)=0$. Thus $a(T)(f(T)(u))=$ 0 , so $h(T)(u)=0$. Likewise, since $g(x)$ is the minimal polynomial of $\left.T\right|_{W}$, $g(T)(w)=0$ for any $w \in W$. Thus $h(T)(w)=0$. Let $v \in V$. We can write $v=u+w$ for $u \in U$ and $w \in W$. Then

$$
\begin{aligned}
h(T)(v) & =h(T)(u+w) \\
& =h(T)(u)+h(T)(w) \\
& =0
\end{aligned}
$$

Therefore, $h(T)=0$. Since the degree of $h(T)$ is one less than the degree of $f(x) g(x)$, and $h(T)=0, f(x) g(x)$ cannot be the minimal polynomial of T.

Question 2. Let V be an inner product space over \mathbb{R}, and suppose that $T \in \mathcal{L}(V)$ satisfies $\|T v\|=\|v\|$ for all $v \in V$. Prove that T has at most two eigenvalues.

Proof. For any eigenvalue λ of T, we can find an eigenvector v of T corresponding to λ. So we have

$$
\|T v\|=|\lambda| \cdot\|v\|=\|v\|
$$

Since $v \neq 0$, we must have $|\lambda|=1$. But V is an inner product space over \mathbb{R}, and the only real numbers with absolute value 1 are 1 and -1 . Therefore the only possible eigenvalues are $\lambda=1$ and $\lambda=-1$; in particular, T can have at most 2 eigenvalues.

Question 3. Fix an integer $n \geq 1$, and let $V=\mathbb{C}^{n}$ with the standard inner product. We let $R: V \rightarrow V$ be the operator defined by

$$
R\left(a_{1}, \ldots, a_{n}\right)=\left(a_{2}, \ldots, a_{n}, a_{1}\right)
$$

a) Set $p(x)=x^{n}-1$. Prove that $p(R)=0$. Convince yourself that $p(x)=x^{n}-1$ is in fact the minimal polynomial of R.
b) Since $p(x)$ has n distinct roots, we know that R is diagonalizable. Diagonalize R by finding a basis of eigenvectors v_{1}, \ldots, v_{n} for \mathbb{C}^{n} satisfying

$$
R\left(v_{i}\right)=\omega^{i} v_{i} \text { and }\left\|v_{i}\right\|=1
$$

c) Prove that if $\mu \in \mathbb{C}$ satisfies $\mu^{n}=1$ but $\mu \neq 1$, then $1+\mu+\mu^{2}+\cdots+\mu^{n-1}=0$.
d) Prove your basis v_{1}, \ldots, v_{n} is orthonormal.
e) If $v=\left(a_{1}, \ldots, a_{n}\right)$ is written as $v=b_{1} v_{1}+\cdots+b_{n} v_{n}$, give a formula for the coefficient b_{i} in terms of the coordinates a_{1}, \ldots, a_{n}.
f) If $v=\left(a_{1}, \ldots, a_{n}\right)$ is written as $v=b_{1} v_{1}+\cdots+b_{n} v_{n}$, give a formula for the coordinate a_{i} in terms of the coefficients b_{1}, \ldots, b_{n}.
g) If $v=\left(a_{1}, \ldots, a_{n}\right)$ is written as $v=b_{1} v_{1}+\cdots+b_{n} v_{n}$, prove that the coordinates a_{1}, \ldots, a_{n} and the coefficients b_{1}, \ldots, b_{n} satisfy the relation

$$
\left|a_{1}\right|^{2}+\cdots+\left|a_{n}\right|^{2}=\left|b_{1}\right|^{2}+\cdots+\left|b_{n}\right|^{2}
$$

Proof. (a) For any element $a=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{C}^{n}$, we just need to prove that $R^{n} a=a$. Since $R a=R\left(a_{1}, \ldots, a_{n}\right)=\left(a_{2}, \ldots, a_{n}, a_{1}\right)$, we have

$$
R^{2} a=R\left(a_{2}, \ldots, a_{n}, a_{1}\right)=R\left(a_{3}, \ldots, a_{n}, a_{1}, a_{2}\right)
$$

Repeating this n times, we conclude that

$$
\begin{gathered}
R^{n-1} a=\left(a_{n}, a_{1}, \ldots, a_{n-1}\right) \\
R^{n} a=R\left(R^{n-1} a\right)=R\left(a_{n}, a_{1}, \ldots, a_{n-1}\right)=\left(a_{1}, \ldots, a_{n}\right)=a .
\end{gathered}
$$

Therefore we have $\left(R^{n}-I\right) a=0$. Therefore $p(R)=0$, as desired.
(b) We just need to show that if $f(x)$ is a nonzero polynomial of degree $<n$, then $f(R) \neq 0$. Write this polynomial as $f(x)=c_{0}+c_{1} x+c_{2} x^{2}+\cdots+c_{n-1} x^{n-1}$ for some coefficients $c_{0}, c_{1}, c_{2}, \ldots, c_{n-1} \in \mathbb{C}$. [Note that we have not bothered to assume that $f(x)$ is monic; it's a bit easier that way, notationally.]

Consider the vector $v=(0, \ldots, 0,1)$. We will show that $f(R)$ is not the zero operator by showing that $f(R) v$ is not the zero vector. From the computations above, we know that
$R v=(0, \ldots, 0,1,0), \quad R^{2} v=(0, \ldots, 1,0,0), \ldots \quad R^{n-1} v=(1,0, \ldots, 0)$.
Therefore $f(R) v$ is equal to

$$
\begin{aligned}
\left(c_{0}+c_{1} R+c_{2} R^{2}+\cdots+c_{n-1} R^{n-1}\right) v= & c_{0} v+c_{1} R v+c_{2} R^{2} v+\cdots+c_{n-1} R^{n-1} v \\
= & \left(0, \ldots, 0,0, c_{0}\right) \\
& +\left(0, \ldots, 0, c_{1}, 0\right) \\
& +\left(0, \ldots, c_{2}, 0,0\right) \\
& +\cdots \\
& +\left(c_{n-1}, \ldots, 0,0,0\right) \\
= & \left(c_{n-1}, \ldots, c_{3}, c_{2}, c_{1}, c_{0}\right)
\end{aligned}
$$

Since $f(x)$ is a nonzero polynomial, at least one of the coefficients c_{i} must be nonzero, so this vector $f(R) v=\left(c_{n-1}, \ldots, c_{3}, c_{2}, c_{1}, c_{0}\right)$ must be nonzero. This proves that n is the smallest possible degree of a polynomial with $f(R)=0$; since $p(x)$ has degree n, this shows that $p(x)=x^{n}-1$ is the minimal polynomial of R.
(c) Let $w_{i}=\left(\omega^{i}, \omega^{2 i}, \ldots, \omega^{n i}\right)$ for $i=1, \ldots, n$. So, $w_{1}=\left(\omega, \omega^{2}, \ldots, \omega^{n-1}, 1\right)$, $w_{2}=\left(\omega^{2}, \omega^{4}, \ldots, \omega^{2 n-2}, 1\right)$ and so on until $w_{n}=(1,1, \ldots, 1)$. We claim that these are eigenvectors s.t. w_{i} has eigenvalue ω^{i}. We can compute what R does to these vectors:

$$
R\left(\omega^{i}, \omega^{2 i}, \ldots, \omega^{n i}\right)=\left(\omega^{2 i}, \omega^{3 i}, \ldots, \omega^{n i}, \omega^{i}\right)
$$

Since $\omega^{i} \cdot \omega^{k i}=\omega^{(k+1) i}$, we see that $R\left(w_{i}\right)=\omega^{i} \cdot w_{i}$ as desired. (Note that $\omega^{n i}=\left(\omega^{n}\right)^{i}=1^{i}=1$, so in the last coordinate we have $\omega^{i} \cdot \omega^{n i}=\omega^{i}$.) Since $1, \omega, \ldots, \omega^{n-1}$ are distinct eigenvalues, w_{1}, \ldots, w_{n} are linearly independent. As there are n of them, they must form a basis for \mathbb{C}^{n}.

Since $|\omega|=1$, we have that $\left|\omega^{i}\right|=1^{i}=1$ for all i. Thus for all i,

$$
\left\|w_{i}\right\|^{2}=\left|\omega^{i}\right|+\left|\omega^{2 i}\right|+\cdots+\left|\omega^{n i}\right|=1+1+1+\cdots+1=n
$$

This shows that each of our eigenvectors w_{i} has length $\left\|w_{i}\right\|=\sqrt{n}$. To get an eigenbasis v_{1}, \ldots, v_{n} with length 1 , we set $v_{i}=\frac{1}{\sqrt{n}} w_{i}$. In conclusion, v_{1}, \ldots, v_{n} forms a basis for \mathbb{C}^{n} s.t. $\left\|v_{i}\right\|=1$ for all i, and R is diagonal with respect to this basis.
(d) If $\mu \neq 1$, then $1-\mu$ is nonzero. If we multiply the sum $1+\mu+\mu^{2}+\cdots+\mu^{n-1}$ by $1-\mu$, we get a telescoping sum:

$$
\begin{array}{rlr}
(1-\mu)\left(1+\mu+\mu^{2}+\cdots+\mu^{n-1}\right) & =1-\mu+\mu-\mu^{2}+\mu^{2}-\cdots+\mu^{n-1}-\mu^{n} \\
& =1 & -\mu^{n}
\end{array}
$$

But our assumption was that $\mu^{n}=1$, so $1-\mu^{n}=0$. Since $1+\mu+\mu^{2}+\cdots+\mu^{n-1}$ becomes 0 when multiplied by the nonzero constant $1-\mu$, it must be that $1+\mu+\mu^{2}+\cdots+\mu^{n-1}=0$.
(e) We have already shown that $\left\|v_{i}\right\|=1$ for all i. Now we need to show that $\left\langle v_{i}, v_{j}\right\rangle=0$ for all $i \neq j$. So suppose that $i \neq j$. Then

$$
\left\langle v_{i}, v_{j}\right\rangle=\frac{1}{n}\left(\omega^{i} \cdot \bar{\omega}^{j}+\omega^{2 i} \cdot \bar{\omega}^{2 j}+\cdots+\omega^{n i} \cdot \bar{\omega}^{n j}\right)
$$

Since ω is on the unit circle, we know that $|\omega|=1$, or in other words $\omega \cdot \bar{\omega}=1$. This shows that $\bar{\omega}=\omega^{-1}$, and so in general $\bar{\omega}^{k j}=\omega^{-k j}$. Thus,

$$
\left\langle v_{i}, v_{j}\right\rangle=\frac{1}{n}\left(\omega^{i-j}+\omega^{2(i-j)}+\cdots+\omega^{n(i-j)}\right)
$$

Set $\mu=\omega^{i-j}$; note that the last term above is $\mu^{n}=\omega^{n(i-j)}=\left(\omega^{n}\right)^{i-j}=$ $1^{i-j}=1$, so the sum inside the parentheses is

$$
\mu+\mu^{2}+\cdots+\mu^{n-1}+\mu^{n}=\mu+\mu^{2}+\cdots+\mu^{n-1}+1
$$

Since $i \neq j$ we know that $\mu \neq 1$, so part c) implies that the sum inside the parentheses is 0 :

$$
\left\langle v_{i}, v_{j}\right\rangle=\frac{1}{n}\left(1+\mu+\mu^{2}+\cdots+\mu^{n-1}\right)=\frac{1}{n} \cdot 0=0 .
$$

Therefore $\left\langle v_{i}, v_{j}\right\rangle=0$ for all $i \neq j$, demonstrating that the vectors v_{1}, \ldots, v_{n} form an orthonormal basis for \mathbb{C}^{n}.
(f) If $v=b_{1} v_{1}+\cdots+b_{n} v_{n}$, then $\left\langle v, v_{i}\right\rangle=b_{i}$ since v_{1}, \ldots, v_{n} form an orthonormal basis for \mathbb{C}^{n}. Thus,

$$
\begin{aligned}
b_{i} & =\left\langle\left(a_{1}, a_{2}, \ldots, a_{n}\right), \frac{1}{\sqrt{n}}\left(\omega^{i}, \ldots, \omega^{n i}\right)\right\rangle \\
& =\frac{1}{\sqrt{n}}\left(a_{1} \omega^{-i}+a_{2} \omega^{-2 i}+\cdots+a_{n} \omega^{-n i}\right)=\frac{1}{\sqrt{n}} \sum_{j=1}^{n} \omega^{-i j} a_{j}
\end{aligned}
$$

[TC: this is the analogue of the Fourier transform $\hat{f}(\theta)=\frac{1}{\sqrt{(2 \pi)^{n}}} \int e^{-i \theta x} f(x) d x$.]
(g) If $v=b_{1} v_{1}+\cdots+b_{n} v_{n}$, we can just compute

$$
\begin{aligned}
v=\left(a_{1}, \ldots, a_{n}\right)= & \frac{b_{1}}{\sqrt{n}}\left(\omega, \omega^{2}, \ldots, \omega^{n}\right)+ \\
& +\frac{b_{2}}{\sqrt{n}}\left(\omega^{2}, \omega^{4}, \ldots, \omega^{2 n}\right) \\
& +\vdots \\
& +\frac{b_{n}}{\sqrt{n}}(1,1,1, \ldots, 1)
\end{aligned}
$$

So looking at the i th component we have:

$$
a_{i}=\frac{1}{\sqrt{n}}\left(b_{1} \omega^{i}+b_{2} \omega^{2 i}+\cdots+b_{n} \omega^{n i}\right)=\frac{1}{\sqrt{n}} \sum_{j=1}^{n} \omega^{i j} b_{j}
$$

[TC: this is analogous to the inverse Fourier transform $f(x)=\frac{1}{\sqrt{(2 \pi)^{n}}} \int e^{i \theta x} \hat{f}(\theta) d \theta$.]
(h) If we write $v=\left(a_{1}, \ldots, a_{n}\right)$ then the standard inner product on \mathbb{C}^{n} satisfies $\|v\|^{2}=\left|a_{1}\right|^{2}+\cdots+\left|a_{n}\right|^{2}$.

On the other hand, if we write $v=b_{1} v_{1}+\cdots+b_{n} v_{n}$, then

$$
\|v\|^{2}=\left\langle b_{1} v_{1}+\cdots+b_{n} v_{n}, b_{1} v_{1}+\cdots+b_{n} v_{n}\right\rangle
$$

Since v_{1}, \ldots, v_{n} is an orthonormal basis, this is just

$$
\left\langle b_{1} v_{1}+\cdots+b_{n} v_{n}, b_{1} v_{1}+\cdots+b_{n} v_{n}\right\rangle=\left|b_{1}\right|^{2}+\cdots+\left|b_{n}\right|^{2}
$$

Therefore we must have

$$
\left|a_{1}\right|^{2}+\cdots+\left|a_{n}\right|^{2}=\left|b_{1}\right|^{2}+\cdots+\left|b_{n}\right|^{2},
$$

because both sides are equal to $\|v\|^{2}$.

