Math 113: Linear Algebra and Matrix Theory

Thomas Church (tfchurch@stanford.edu)

http://math.stanford.edu/~church/teaching/113-F15

Homework 6

Due Wednesday, November 4 in class.

Do all the following exercises.

6A.16: you can assume that V is a vector space over \mathbb{R} .

6B.5: uses the Gram-Schmidt algorithm, which we may not cover until Monday. If you want to start early, it's on p183. **6B.7 and 6B.8:** you may find these much easier after solving 6B.5.

Question 1. Let V be a finite-dimensional vector space over \mathbb{C} , and let $T \in \mathcal{L}(V)$. Let U and W be nonzero subspaces such that $V = U \oplus W$.

Assume that U and W are invariant under T, so we can restrict the operator $T: V \to V$ to an operator $T|_U: U \to U$, and similarly we can restrict T to an operator $T|_W: W \to W$.

a) Prove without using minimal polynomials that if $\lambda \in \mathbb{C}$ is an eigenvalue of T, then either λ is an eigenvalue of $T|_U$ or λ is an eigenvalue of $T|_W$ (or both).

[Hint: start with a nonzero eigenvector $v \in V$ such that $T(v) = \lambda v$, and somehow construct either an eigenvector $u \in U$ such that $T(u) = \lambda u$, or an eigenvector $w \in W$ such that $T(w) = \lambda w$.]

Let f(x) be the minimal polynomial of $T|_{U}$, and let g(x) be the minimal polynomial of $T|_{W}$.

- b) Prove that f(T)g(T) = 0 in $\mathcal{L}(V)$.
- c) Prove that if f(x) and g(x) have no shared roots (meaning no $\lambda \in \mathbb{C}$ is a root of both f(x) and g(x)), then f(x)g(x) is the minimal polynomial of T.
- d) Prove that if f(x) and g(x) have a shared root $\lambda \in \mathbb{C}$, then f(x)g(x) is **not** the minimal polynomial of T.

Question 2. Let V be an inner product space over \mathbb{R} , and suppose that $T \in \mathcal{L}(V)$ satisfies ||Tv|| = ||v|| for all $v \in V$. Prove that T has at most two eigenvalues.

(Question 3 provides an example showing that this does not hold for operators on inner product spaces over \mathbb{C} .)

Question 3. Fix an integer $n \geq 1$, and let $V = \mathbb{C}^n$ with the standard inner product. We let $R: V \to V$ be the operator defined by

$$R(a_1, \ldots, a_n) = (a_2, \ldots, a_n, a_1).$$

(a) Set $p(x) = x^n - 1$. Prove that p(R) = 0.

(b*) Convince yourself that $p(x) = x^n - 1$ is in fact the minimal polynomial of R. (Hint: choose a small n, write the matrices for $I, R, R^2, \ldots, R^{n-1}$ and see that they are linearly independent.) (You do not have to turn anything in for this part.)

This means that the eigenvalues of R are the roots of $x^n - 1$; since you might not be familiar with these awesome numbers (called "roots of unity"), here are the relevant facts.

Let $\omega \in \mathbb{C}$ be the complex number $\omega = \cos(\frac{2\pi}{n}) + i\sin(\frac{2\pi}{n})$. Then $x^n - 1$ factors as

$$(x-1)(x-\omega)(x-\omega^2)\cdots(x-\omega^{n-1})$$

All the roots $1, \omega, \omega^2, \dots, \omega^{n-1}$ are on the unit circle in \mathbb{C} (meaning $z\overline{z}=1$), and in fact they are equally spaced around the unit circle until you get back to $\omega^n=1$.

(c) Since p(x) has n distinct roots, we know that R is diagonalizable. Diagonalize R by finding a basis of eigenvectors v_1, \ldots, v_n for \mathbb{C}^n satisfying

$$R(v_k) = \omega^k \cdot v_k$$
 and $||v_k|| = 1$.

- (d) Prove that if $\mu \in \mathbb{C}$ satisfies $\mu^n = 1$ but $\mu \neq 1$, then $1 + \mu + \mu^2 + \dots + \mu^{n-1} = 0$. [Hint: multiply by $\mu 1$.]
- (e) Prove that your basis v_1, \ldots, v_n is orthonormal.
- (f) If $v = (a_1, \ldots, a_n)$ is written as $v = b_1 v_1 + \cdots + b_n v_n$, give a formula for the coefficient b_i in terms of the coordinates a_1, \ldots, a_n . [Hint: use part (e).]
- (g) If $v = (a_1, \ldots, a_n)$ is written as $v = b_1 v_1 + \cdots + b_n v_n$, give a formula for the coordinate a_i in terms of the coefficients b_1, \ldots, b_n . [Hint: this is easy.]
- (h) If $v = (a_1, \ldots, a_n)$ is written as $v = b_1v_1 + \cdots + b_nv_n$, prove that the coordinates a_1, \ldots, a_n and the coefficients b_1, \ldots, b_n satisfy the relation

$$|a_1|^2 + \dots + |a_n|^2 = |b_1|^2 + \dots + |b_n|^2$$
.

Remark: The formula you found in (f) is the Fourier transform, or rather a discretized version of it; the formula you found in (g) is the inverse Fourier transform.

The equality you proved in (h) is a discrete version of the famous Plancherel theorem (also known as Rayleigh's energy theorem): If $f: [-\pi, \pi] \to \mathbb{C}$ is a continuous function with $f(-\pi) = f(\pi)$, we saw in class that

energy
$$(f)^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x)|^2 dx.$$

Let the Fourier coefficients $b_k \in \mathbb{C}$ be the sequence defined for $k \in \mathbb{Z}$ by

$$b_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)e^{-ikx} dx.$$

Then energy $(f)^2$ can be computed by either side of:

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x)|^2 dx = \sum_{k=-\infty}^{\infty} |b_k|^2.$$