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Thomas Church (tfchurch@stanford.edu)

http://math.stanford.edu/~church/teaching/113-F15

Homework 6
Due Wednesday, November 4 in class.

Do all the following exercises.

6A.16 over R

6B.5 6B.7 6B.8

6A.16: you can assume that V is a vector space over R.

6B.5: uses the Gram-Schmidt algorithm, which we may not cover until Monday. If you want to start early, it’s on p183.

6B.7 and 6B.8: you may find these much easier after solving 6B.5.

Question 1. Let V be a finite-dimensional vector space over C, and let T ∈ L(V ). Let U and W

be nonzero subspaces such that V = U ⊕W .

Assume that U and W are invariant under T , so we can restrict the operator T : V → V to an

operator T |U : U → U , and similarly we can restrict T to an operator T |W : W →W .

a) Prove without using minimal polynomials that if λ ∈ C is an eigenvalue of T , then either λ is

an eigenvalue of T |U or λ is an eigenvalue of T |W (or both).

[Hint: start with a nonzero eigenvector v ∈ V such that T (v) = λv, and somehow construct

either an eigenvector u ∈ U such that T (u) = λu, or an eigenvector w ∈ W such that

T (w) = λw.]

Let f(x) be the minimal polynomial of T |U , and let g(x) be the minimal polynomial of T |W .

b) Prove that f(T )g(T ) = 0 in L(V ).

c) Prove that if f(x) and g(x) have no shared roots (meaning no λ ∈ C is a root of both f(x)

and g(x)), then f(x)g(x) is the minimal polynomial of T .

d) Prove that if f(x) and g(x) have a shared root λ ∈ C, then f(x)g(x) is not the minimal

polynomial of T .

Question 2. Let V be an inner product space over R, and suppose that T ∈ L(V ) satisfies

‖Tv‖ = ‖v‖ for all v ∈ V . Prove that T has at most two eigenvalues.

(Question 3 provides an example showing that this does not hold for operators on inner product spaces over C.)

Question 3. Fix an integer n ≥ 1, and let V = Cn with the standard inner product. We let

R : V → V be the operator defined by

R(a1, . . . , an) = (a2, . . . , an, a1).

(a) Set p(x) = xn − 1. Prove that p(R) = 0.
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(b*) Convince yourself that p(x) = xn − 1 is in fact the minimal polynomial of R. (Hint: choose a

small n, write the matrices for I,R,R2, . . . , Rn−1 and see that they are linearly independent.)

(You do not have to turn anything in for this part.)

This means that the eigenvalues of R are the roots of xn − 1; since you might not be familiar with

these awesome numbers (called “roots of unity”), here are the relevant facts.

Let ω ∈ C be the complex number ω = cos(2πn ) + i sin(2πn ). Then xn − 1 factors as

(x− 1)(x− ω)(x− ω2) · · · (x− ωn−1)

All the roots 1, ω, ω2, . . . , ωn−1 are on the unit circle in C (meaning zz = 1), and in fact they are

equally spaced around the unit circle until you get back to ωn = 1.

(c) Since p(x) has n distinct roots, we know that R is diagonalizable.

Diagonalize R by finding a basis of eigenvectors v1, . . . , vn for Cn satisfying

R(vk) = ωk · vk and ||vk|| = 1.

(d) Prove that if µ ∈ C satisfies µn = 1 but µ 6= 1, then 1 + µ+ µ2 + · · ·+ µn−1 = 0.

[Hint: multiply by µ− 1.]

(e) Prove that your basis v1, . . . , vn is orthonormal.

(f) If v = (a1, . . . , an) is written as v = b1v1 + · · ·+ bnvn, give a formula for the coefficient bi in

terms of the coordinates a1, . . . , an. [Hint: use part (e).]

(g) If v = (a1, . . . , an) is written as v = b1v1 + · · ·+ bnvn, give a formula for the coordinate ai in

terms of the coefficients b1, . . . , bn. [Hint: this is easy.]

(h) If v = (a1, . . . , an) is written as v = b1v1 + · · ·+ bnvn, prove that the coordinates a1, . . . , an
and the coefficients b1, . . . , bn satisfy the relation

|a1|2 + · · ·+ |an|2 = |b1|2 + · · ·+ |bn|2.

Remark: The formula you found in (f) is the Fourier transform, or rather a discretized version

of it; the formula you found in (g) is the inverse Fourier transform.

The equality you proved in (h) is a discrete version of the famous Plancherel theorem (also known

as Rayleigh’s energy theorem): If f : [−π, π]→ C is a continuous function with f(−π) = f(π), we

saw in class that

energy(f)2 =
1

2π

∫ π

−π
|f(x)|2 dx.

Let the Fourier coefficients bk ∈ C be the sequence defined for k ∈ Z by

bk =
1

2π

∫ π

−π
f(x)e−ikx dx.

Then energy(f)2 can be computed by either side of:

1

2π

∫ π

−π
|f(x)|2 dx =

∞∑
k=−∞

|bk|2.
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