Homework 6
Due Wednesday, November 4 in class.

Do all the following exercises.

6A.16 over \(\mathbb{R} \)
6B.5 6B.7 6B.8

6A.16: you can assume that \(V \) is a vector space over \(\mathbb{R} \).
6B.5: uses the Gram-Schmidt algorithm, which we may not cover until Monday. If you want to start early, it’s on p183.
6B.7 and 6B.8: you may find these much easier after solving 6B.5.

Question 1. Let \(V \) be a finite-dimensional vector space over \(\mathbb{C} \), and let \(T \in \mathcal{L}(V) \). Let \(U \) and \(W \) be nonzero subspaces such that \(V = U \oplus W \).

Assume that \(U \) and \(W \) are invariant under \(T \), so we can restrict the operator \(T: V \to V \) to an operator \(T|_U: U \to U \), and similarly we can restrict \(T \) to an operator \(T|_W: W \to W \).

a) Prove without using minimal polynomials that if \(\lambda \in \mathbb{C} \) is an eigenvalue of \(T \), then either \(\lambda \) is an eigenvalue of \(T|_U \) or \(\lambda \) is an eigenvalue of \(T|_W \) (or both).

[Hint: start with a nonzero eigenvector \(v \in V \) such that \(T(v) = \lambda v \), and somehow construct either an eigenvector \(u \in U \) such that \(T(u) = \lambda u \), or an eigenvector \(w \in W \) such that \(T(w) = \lambda w \).]

Let \(f(x) \) be the minimal polynomial of \(T|_U \), and let \(g(x) \) be the minimal polynomial of \(T|_W \).

b) Prove that \(f(T)g(T) = 0 \) in \(\mathcal{L}(V) \).

c) Prove that if \(f(x) \) and \(g(x) \) have no shared roots (meaning no \(\lambda \in \mathbb{C} \) is a root of both \(f(x) \) and \(g(x) \)), then \(f(x)g(x) \) is the minimal polynomial of \(T \).

d) Prove that if \(f(x) \) and \(g(x) \) have a shared root \(\lambda \in \mathbb{C} \), then \(f(x)g(x) \) is not the minimal polynomial of \(T \).

Question 2. Let \(V \) be an inner product space over \(\mathbb{R} \), and suppose that \(T \in \mathcal{L}(V) \) satisfies \(\|Tv\| = \|v\| \) for all \(v \in V \). Prove that \(T \) has at most two eigenvalues.

(Question 3 provides an example showing that this does not hold for operators on inner product spaces over \(\mathbb{C} \).)

Question 3. Fix an integer \(n \geq 1 \), and let \(V = \mathbb{C}^n \) with the standard inner product. We let \(R: V \to V \) be the operator defined by

\[
R(a_1, \ldots, a_n) = (a_2, \ldots, a_n, a_1).
\]

(a) Set \(p(x) = x^n - 1 \). Prove that \(p(R) = 0 \).
(b*) Convince yourself that \(p(x) = x^n - 1 \) is in fact the minimal polynomial of \(R \). (Hint: choose a small \(n \), write the matrices for \(I, R, R^2, \ldots, R^{n-1} \) and see that they are linearly independent.) (You do not have to turn anything in for this part.)

This means that the eigenvalues of \(R \) are the roots of \(x^n - 1 \); since you might not be familiar with these awesome numbers (called “roots of unity”), here are the relevant facts.

Let \(\omega \in \mathbb{C} \) be the complex number \(\omega = \cos\left(\frac{2\pi}{n}\right) + i \sin\left(\frac{2\pi}{n}\right) \). Then \(x^n - 1 \) factors as

\[
(x - 1)(x - \omega)(x - \omega^2) \cdots (x - \omega^{n-1})
\]

All the roots \(1, \omega, \omega^2, \ldots, \omega^{n-1} \) are on the unit circle in \(\mathbb{C} \) (meaning \(z \bar{z} = 1 \)), and in fact they are equally spaced around the unit circle until you get back to \(\omega^n = 1 \).

(c) Since \(p(x) \) has \(n \) distinct roots, we know that \(R \) is diagonalizable.

Diagonalize \(R \) by finding a basis of eigenvectors \(v_1, \ldots, v_n \) for \(\mathbb{C}^n \) satisfying

\[
R(v_k) = \omega^k \cdot v_k \quad \text{and} \quad ||v_k|| = 1.
\]

(d) Prove that if \(\mu \in \mathbb{C} \) satisfies \(\mu^n = 1 \) but \(\mu \neq 1 \), then \(1 + \mu + \mu^2 + \cdots + \mu^{n-1} = 0 \).

[Hint: multiply by \(\mu - 1 \).]

(e) Prove that your basis \(v_1, \ldots, v_n \) is orthonormal.

(f) If \(v = (a_1, \ldots, a_n) \) is written as \(v = b_1 v_1 + \cdots + b_n v_n \), give a formula for the coefficient \(b_i \) in terms of the coordinates \(a_1, \ldots, a_n \). [Hint: use part (e).]

(g) If \(v = (a_1, \ldots, a_n) \) is written as \(v = b_1 v_1 + \cdots + b_n v_n \), give a formula for the coordinate \(a_i \) in terms of the coefficients \(b_1, \ldots, b_n \). [Hint: this is easy.]

(h) If \(v = (a_1, \ldots, a_n) \) is written as \(v = b_1 v_1 + \cdots + b_n v_n \), prove that the coordinates \(a_1, \ldots, a_n \) and the coefficients \(b_1, \ldots, b_n \) satisfy the relation

\[
|a_1|^2 + \cdots + |a_n|^2 = |b_1|^2 + \cdots + |b_n|^2.
\]

Remark: The formula you found in (f) is the Fourier transform, or rather a discretized version of it; the formula you found in (g) is the inverse Fourier transform.

The equality you proved in (h) is a discrete version of the famous Plancherel theorem (also known as Rayleigh’s energy theorem): If \(f : [-\pi, \pi] \rightarrow \mathbb{C} \) is a continuous function with \(f(-\pi) = f(\pi) \), we saw in class that

\[
\text{energy}(f)^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x)|^2 \, dx.
\]

Let the Fourier coefficients \(b_k \in \mathbb{C} \) be the sequence defined for \(k \in \mathbb{Z} \) by

\[
b_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)e^{-ikx} \, dx.
\]

Then energy\((f)^2 \) can be computed by either side of:

\[
\frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x)|^2 \, dx = \sum_{k=-\infty}^{\infty} |b_k|^2.
\]