Math 113: Linear Algebra and Matrix Theory
 Thomas Church (tfchurch@stanford.edu)
 http://math.stanford.edu/~church/teaching/113-F15

Homework 6

Due Wednesday, November 4 in class.

Do all the following exercises.

$$
\begin{array}{lll}
6 \mathrm{~A} .16 \text { over } \mathbb{R} & & \\
6 \mathrm{~B} .5 & 6 \mathrm{~B} .7 & 6 \mathrm{~B} .8
\end{array}
$$

6A.16: you can assume that V is a vector space over \mathbb{R}.
6B.5: uses the Gram-Schmidt algorithm, which we may not cover until Monday. If you want to start early, it's on p183.
6B.7 and 6B.8: you may find these much easier after solving 6B.5.
Question 1. Let V be a finite-dimensional vector space over \mathbb{C}, and let $T \in \mathcal{L}(V)$. Let U and W be nonzero subspaces such that $V=U \oplus W$.

Assume that U and W are invariant under T, so we can restrict the operator $T: V \rightarrow V$ to an operator $\left.T\right|_{U}: U \rightarrow U$, and similarly we can restrict T to an operator $\left.T\right|_{W}: W \rightarrow W$.
a) Prove without using minimal polynomials that if $\lambda \in \mathbb{C}$ is an eigenvalue of T, then either λ is an eigenvalue of $\left.T\right|_{U}$ or λ is an eigenvalue of $\left.T\right|_{W}$ (or both).
[Hint: start with a nonzero eigenvector $v \in V$ such that $T(v)=\lambda v$, and somehow construct either an eigenvector $u \in U$ such that $T(u)=\lambda u$, or an eigenvector $w \in W$ such that $T(w)=\lambda w$.
Let $f(x)$ be the minimal polynomial of $\left.T\right|_{U}$, and let $g(x)$ be the minimal polynomial of $\left.T\right|_{W}$.
b) Prove that $f(T) g(T)=0$ in $\mathcal{L}(V)$.
c) Prove that if $f(x)$ and $g(x)$ have no shared roots (meaning no $\lambda \in \mathbb{C}$ is a root of both $f(x)$ and $g(x)$), then $f(x) g(x)$ is the minimal polynomial of T.
d) Prove that if $f(x)$ and $g(x)$ have a shared root $\lambda \in \mathbb{C}$, then $f(x) g(x)$ is not the minimal polynomial of T.

Question 2. Let V be an inner product space over \mathbb{R}, and suppose that $T \in \mathcal{L}(V)$ satisfies $\|T v\|=\|v\|$ for all $v \in V$. Prove that T has at most two eigenvalues.
(Question 3 provides an example showing that this does not hold for operators on inner product spaces over \mathbb{C}.)
Question 3. Fix an integer $n \geq 1$, and let $V=\mathbb{C}^{n}$ with the standard inner product. We let $R: V \rightarrow V$ be the operator defined by

$$
R\left(a_{1}, \ldots, a_{n}\right)=\left(a_{2}, \ldots, a_{n}, a_{1}\right) .
$$

(a) Set $p(x)=x^{n}-1$. Prove that $p(R)=0$.
$\left(\mathrm{b}^{*}\right)$ Convince yourself that $p(x)=x^{n}-1$ is in fact the minimal polynomial of R. (Hint: choose a small n, write the matrices for $I, R, R^{2}, \ldots, R^{n-1}$ and see that they are linearly independent.) (You do not have to turn anything in for this part.)

This means that the eigenvalues of R are the roots of $x^{n}-1$; since you might not be familiar with these awesome numbers (called "roots of unity"), here are the relevant facts.

Let $\omega \in \mathbb{C}$ be the complex number $\omega=\cos \left(\frac{2 \pi}{n}\right)+i \sin \left(\frac{2 \pi}{n}\right)$. Then $x^{n}-1$ factors as

$$
(x-1)(x-\omega)\left(x-\omega^{2}\right) \cdots\left(x-\omega^{n-1}\right)
$$

All the roots $1, \omega, \omega^{2}, \ldots, \omega^{n-1}$ are on the unit circle in \mathbb{C} (meaning $z \bar{z}=1$), and in fact they are equally spaced around the unit circle until you get back to $\omega^{n}=1$.
(c) Since $p(x)$ has n distinct roots, we know that R is diagonalizable.

Diagonalize R by finding a basis of eigenvectors v_{1}, \ldots, v_{n} for \mathbb{C}^{n} satisfying

$$
R\left(v_{k}\right)=\omega^{k} \cdot v_{k} \quad \text { and } \quad\left\|v_{k}\right\|=1 .
$$

(d) Prove that if $\mu \in \mathbb{C}$ satisfies $\mu^{n}=1$ but $\mu \neq 1$, then $1+\mu+\mu^{2}+\cdots+\mu^{n-1}=0$.
[Hint: multiply by $\mu-1$.]
(e) Prove that your basis v_{1}, \ldots, v_{n} is orthonormal.
(f) If $v=\left(a_{1}, \ldots, a_{n}\right)$ is written as $v=b_{1} v_{1}+\cdots+b_{n} v_{n}$, give a formula for the coefficient b_{i} in terms of the coordinates a_{1}, \ldots, a_{n}. [Hint: use part (e).]
(g) If $v=\left(a_{1}, \ldots, a_{n}\right)$ is written as $v=b_{1} v_{1}+\cdots+b_{n} v_{n}$, give a formula for the coordinate a_{i} in terms of the coefficients b_{1}, \ldots, b_{n}. [Hint: this is easy.]
(h) If $v=\left(a_{1}, \ldots, a_{n}\right)$ is written as $v=b_{1} v_{1}+\cdots+b_{n} v_{n}$, prove that the coordinates a_{1}, \ldots, a_{n} and the coefficients b_{1}, \ldots, b_{n} satisfy the relation

$$
\left|a_{1}\right|^{2}+\cdots+\left|a_{n}\right|^{2}=\left|b_{1}\right|^{2}+\cdots+\left|b_{n}\right|^{2} .
$$

Remark: The formula you found in (f) is the Fourier transform, or rather a discretized version of it; the formula you found in (g) is the inverse Fourier transform.

The equality you proved in (h) is a discrete version of the famous Plancherel theorem (also known as Rayleigh's energy theorem): If $f:[-\pi, \pi] \rightarrow \mathbb{C}$ is a continuous function with $f(-\pi)=f(\pi)$, we saw in class that

$$
\operatorname{energy}(f)^{2}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}|f(x)|^{2} d x
$$

Let the Fourier coefficients $b_{k} \in \mathbb{C}$ be the sequence defined for $k \in \mathbb{Z}$ by

$$
b_{k}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{-i k x} d x .
$$

Then energy $(f)^{2}$ can be computed by either side of:

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi}|f(x)|^{2} d x=\sum_{k=-\infty}^{\infty}\left|b_{k}\right|^{2}
$$

