
Math 113 Homework 5 Solutions (Starred problems)

Solutions by Guanyang Wang, with edits by Tom Church.

Exercise 5.C.1 Suppose T ∈ L(V ) is diagonalizable. Prove that V = nullT ⊕
rangeT .

Proof. Let v1, ..., vn be a basis of V with respect to which T has a diagonal ma-
trix. So for every j ∈ 1, 2, ...n, we have some λj ∈ F such that Tvj = λjvj . By
renumbering, we can choose m ∈ {1, 2, ..., n} such that

λj = 0 for j = 1, 2...m

and

λj 6= 0 for j = m+ 1, ...n

So we have V = span{v1, ..., vm} ⊕ span{vm+1, ...vn}. Now we claim that nullT =
span{v1, ..., vm} and rangeT = span{vm+1, ...vn}

First we prove nullT = span{v1, ..., vm}. Notice that span{v1, ..., vm} is the
eigenspace of T corresponding to 0. Hence every element v ∈ span{v1, ..., vm}
satisfies Tv = 0, so v ∈ nullT . Meanwhile any u ∈ nullT , we have Tu = 0,
therefore u is an eigenvector of T corresponding to 0. So u ∈ span{v1, ..., vm}.
Hence we have nullT = span{v1, ..., vm}.

Then we prove rangeT = span{vm+1, ...vn}. For any j ∈ m+ 1, ...n, we have
T (λ−1

j vj) = vj , therefore rangeT ⊃ span{vm+1, ...vn}. Meanwhile for every y ∈
rangeT , we have y = Tx for some x ∈ V . Since v1, ..., vn is a basis of V , we have
x = a1v1 + ...+ anvn for some a1, · · · , an ∈ F. Therefore

y = Tx = T (a1v1 + ...+ anvn)

= λm+1am+1vm+1 + · · ·+ λnanvn ∈ span{vm+1, ..., vn}

Hence we have rangeT = span{vm+1, ...vn}. Therefore we have proved our claim,
so we can conclude that V = nullT ⊕ rangeT . �

Exercise 5.C.2 Prove the converse of the statement in the exercise above or
give a counterexample to the converse.

Proof. The converse of the statement in the exercise above is false. As an example,
define T ∈ L(F2) by

T (w, z) = (w + z, z)

The eigenvector-eigenvalue equation T (w, z) = λ(w, z) is equivalent to the sys-
tem of equations

w + z = λw and z = λz

After solving the equations, we have 1 is the only eigenvalue of T and that

E(1, T ) = {(w, 0) : w ∈ F}.
Since 1 is the only eigenvalue of T , 5.41 shows that T is not diagonalizable.
Because 0 is not an eigenvalue of T , we know that T is invertible. Thus nullT =

{0} and rangeT = F2. Hence F2 = nullT ⊕ rangeT , providing a counterexample
to the converse of the previous exercise.
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Exercise 5.C.8. Suppose T ∈ F5 and dimE(8, T ) = 4. Prove that T − 2I and
T − 6I is invertible.

Proof. From 5.38, we know that

dimE(8, T ) + dimE(2, T ) + dimE(6, T ) ≤ dimF5.

Since dimE(8, T ) = 4 and dimF5 = 5, the inequality above can be written as

dimE(2, T ) + dimE(6, T ) ≤ 1

Thus we have dimE(2, T ) = 0 or dimE(6, T ) = 0. In other words, 2 is not
an eigenvalue of T or 6 is not an eigenvalue of T . Hence T − 2I or T − 6I is
invertible. �

Exercise 5.C.14 Find T ∈ L(C3) such that 6 and 7 are eigenvalues of T and
such that T does not have a diagonal matrix with respect to any basis of C3.

Proof. Define T ∈ L(C3) by

T (z1, z2, z3) = (6z1 + z2, 6z2, 7z3)

The eigenvector-eigenvalue equation T (z1, z2, z3) = λ(z1, z2, z3) is equivalent to the
system of equations

6z1 + z2 = λz1

6z2 = λz2

7z3 = λz3

After solving the equations, we have 6 and 7 are the only eigenvalues of T and from
our definition we have z2 is the eigenvector of T corresponding to 6 and z3 is the
eigenvector of T corresponding to 7. We also have

E(6, T ) = span((1, 0, 0)) and E(7, T ) = span((0, 0, 1))

Thus
dimE(6, T ) = dimE(7, T ) = 1.

Now 5.41 shows that T is not diagonalizable since dimE(6, T ) + dimE(7, T ) =
2 < 3 = dim(C3). �

Exercise 8.C.8 Suppose T ∈ L(V ). Prove that T is invertible if and only if the
constant term in the minimal polynomial of T is nonzero.

Proof. For any polynomial f(x), the constant term is the value f(0) at 0 (since if
f(x) = anx

n + · · ·+ a1x+ a0, then f(0) = an0n + · · ·+ a10 + a0 = a0). Therefore
the constant term in the minimal polynomial p(x) is nonzero if and only if p(0) is
nonzero; in other words, if and only if 0 is not a root of p(x). Since the roots of the
minimal polynomial are the eigenvalues of T , we conclude that:

constant term of p(x) is nonzero ⇐⇒ 0 is not a root of p(x)

⇐⇒ 0 is not an eigenvalue of T

⇐⇒ (T − 0I) = {0}
⇐⇒ T is injective

⇐⇒ T is invertible �
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Question 1.

• Give an example of an operator T on V = C3 whose minimal polynomial
is (x+ 2)2.
• Give an example of an operator S on W = C4 whose minimal polynomial

is (x2 + 1)(x− 3)2.
• What are the eigenvalues of the operators T and S in parts a) and b)?

Proof. • Let T : C3 → C3 be defined by

T (x, y, z) = (−2x,−2y,−2(y + z))

We claim that the minimal polynomial of T is f(x) = (x + 2)2. First we
show that f(T ) = (T + 2I)2 = 0. We have that

(T + 2I)(x, y, z) = (0, 0,−2y)

Thus, (T + 2I)2(x, y, z) = (T + 2I)(0, 0,−2y). Since

(T + 2I)(0, 0,−2y) = (0, 0, 0)

we get that (T − I)2(x, y, z) = (0, 0, 0) for all (x, y, z) ∈ C3. That is,
f(T ) = 0.

We have found one polynomial f(x) ∈ UT , which has degree 2 (recall
from class that UT is the set of all polynomials with F (T ) = 0). It is
obvious that T is not a multiple of the identity, so no degree-1 polynomial
x − λ is contained in UT . Therefore f(x) has the smallest possible degree
in UT , and so the minimal polynomial of T is mT (x) = (x+ 1)2.
• Give an example of an operator S on W = C5 whose minimal polynomial

is (x2 + 1)(x− 3)2.
Let S : C5 → C5 be defined by

S(x, y, z, w, t) = (ix,−iy, 3z, 3w, 3t+ w)

We begin by noting that i −i and 3 are eigenvalues of S:

S(1, 0, 0, 0, 0) = (i, 0, 0, 0, 0) = i · (1, 0, 0, 0, 0)

S(0, 1, 0, 0, 0) = (0,−i, 0, 0, 0) = −i · (0, 1, 0, 0, 0)

S(0, 0, 1, 0, 0) = (0, 0, 3, 0, 0) = 3 · (0, 0, 1, 0, 0)

So we compute

(S − 3I)(x, y, z, w, t) = ((i− 3)x, (−i− 3)y, 0, 0, w)

and therefore.

(S − 3I)2(x, y, z, w, t) = ((i− 3)2x, (−i− 3)2y, 0, 0, 0)

Meanwhile,

(S2 + I)(x, y, z, w, t) = (0, 0, 10z, 10w, 10t+ 6w)

Thus applying (S2 + I) to the result of (S − 3I)2(x, y, z, w, t) we get

(S2 + I)(S − 3I)2(x, y, z, w, t) = (0, 0, 0, 0, 0).

This shows that (S2 + I)(S − 3I)2 = 0, so if f(x) = (x2 + 1)(x− 3)2 then
f(x) ∈ US . However, since −i, i and 3 are eigenvalues of S, we know that
−i,i and 3 are roots of the minimal polynomial. Therefore the only smaller
possibility for the minimal polynomial is (x−i)(x+i)(x−3) = (x2+1)(x−3),
since this is the only polynomial of degree < 4 with both −i, i and 3 as
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roots. So we just need to show that (S2 + I)(S − 3I) 6= 0, and this we can
do by direct computation. Indeed, applying S2 + I to the result of S − 3I
that we found above, we get

(S2 + I)(S − 3I)(x, y, z, w, t) = (0, 0, 0, 0, 10w)

which is non-zero. Thus the minimal polynomial of S is indeed

mS(x) = (x2 + 1)(x− 3)2.

• Since all the eigenvalues are precisely all the zeros of the minimal polyno-
mial (8.49), we just need to compute the zeros of the minimal polynomial.
In the first case, the minimal polynomial (x+ 2)2, so −2 is the only eigen-
value of operator T . In the second case, the minimal polynomial of S is
(x2 + 1)(x − 3)3, the roots of this polynomial are −i, i and 3. Therefore
−i, i and 3 are all the eigenvalues of S.

�

Question 2. Let V = R4, and let T ∈ L(V ) be the operator with matrix
2 0 0 0
0 3 0 1
0 0 3 0
0 0 0 3


Find the minimal polynomial of T .

Proof. We claim that f(x) = (x − 2)(x − 3)2 is the minimal polynomial. First we
show that (T − 2I)(T − 3I)2 = 0

(T − 2I)(T − 3I)2 =


0 0 0 0
0 1 0 1
0 0 1 0
0 0 0 1

 ·

−1 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

 ·

−1 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0



=


0 0 0 0
0 1 0 1
0 0 1 0
0 0 0 1

 ·


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0



=


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0



Therefore we have (T − 2I)(T − 3I)2 = 0, so f(x) = (x− 2)(x− 3)2 ∈ UT .
However, since 2, and 3 are eigenvalues of T , we know that 2 and 3 are roots

of the minimal polynomial. Therefore the only smaller possibility for the minimal
polynomial is (x − 2)(x − 3), since this is the only polynomial of degree < 3 with
both 2 and 3 as roots. So we just need to show that (T − 2I)(T − 3I) 6= 0, and this
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we can do by direct computation.

(T − 2I)(T − 3I) =


0 0 0 0
0 1 0 1
0 0 1 0
0 0 0 1

 ·

−1 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

 =


0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0


which is not 0. Thus the minimal polynomial of T is indeed

mT (x) = (x− 2)(x− 3)2.
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