Math 113: Linear Algebra and Matrix Theory
 Thomas Church (tfchurch@stanford.edu)
 http://math.stanford.edu/~church/teaching/113-F15

Homework 5

Due Wednesday, October 28 in class.

Do all the following exercises, but write up only the unstarred exercises and the questions below. (Starred exercises are valuable and worth working out, but they will not be collected or graded.)

$$
\begin{array}{llll}
5 \mathrm{C} .1^{*} & 5 \mathrm{C} .2 & 5 \mathrm{C} .8^{*} & 5 \mathrm{C} .14^{*} \\
8 \mathrm{C} .8^{*} & & &
\end{array}
$$

Question 1.

a) Give an example of an operator T on $V=\mathbb{C}^{3}$ whose minimal polynomial is $(x+2)^{2}$.
b) Give an example of an operator S on $W=\mathbb{C}^{5}$ whose minimal polynomial is $\left(x^{2}+1\right)(x-3)^{2}$.
c) What are the eigenvalues of the operators T and S in parts a) and b)?

Question 2. Let $V=\mathbb{R}^{4}$, and let $T \in \mathcal{L}(V)$ be the operator with matrix

$$
\left[\begin{array}{llll}
2 & 0 & 0 & 0 \\
0 & 3 & 0 & 1 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & 3
\end{array}\right]
$$

Find the minimal polynomial of T.

