Math 113 Homework 4 Solutions

Solutions by Guanyang Wang, with edits by Tom Church.

Exercises from the book.

Exercise 3.E.13 Suppose U is a subspace of V and $v_1 + U, \ldots, v_m + U$ is a basis of V/U and u_1, \ldots, u_n is a basis of U. Prove that $v_1, \ldots, v_m, u_1, \ldots, u_n$ is a basis of V.

Proof. First we prove that $v_1, \ldots, v_m, u_1, \ldots, u_n$ is a linearly independent list in V.

Suppose that $a_1, \ldots, a_m, b_1, \ldots, b_n \in \mathbb{F}$ are scalars such that

$$a_1 v_1 + \ldots + a_m v_m + b_1 u_1 + \ldots + b_n u_n = 0$$

Thus $a_1 v_1 + \ldots + a_m v_m = -(b_1 u_1 + \ldots + b_n u_n) \in U$, which implies that

$$a_1 (v_1 + U) + \ldots + a_m (v_m + U) = 0 + U$$

Because $v_1 + U, \ldots, v_m + U$ is a basis of V/U, this implies $a_1 = \ldots = a_m = 0$. Therefore we have

$$b_1 u_1 + \ldots + b_n u_n = 0$$

Since u_1, \ldots, u_n is a basis of V, this implies $b_1 = \ldots = b_n = 0$. Thus $a_1 = \ldots = a_m = b_1 = \ldots = b_n = 0$, which implies that $v_1, \ldots, v_m, u_1, \ldots, u_n$ is a linearly independent list in V.

Then we prove that $v_1, \ldots, v_m, u_1, \ldots, u_n$ is a basis of V. Now suppose $v \in V$. Because the list $v_1 + U, \ldots, v_m + U$ spans V/U, there exist $c_1, \ldots, c_m \in \mathbb{F}$ such that

$$v + U = c_1 (v_1 + U) + \ldots + c_m (v_m + U)$$

Thus

$$v - c_1 v_1 - \ldots - c_m v_m \in U$$

Because the list u_1, \ldots, u_n spans V/U, there exist $d_1, \ldots, d_n \in \mathbb{F}$ such that

$$v - c_1 v_1 - \ldots - c_m v_m = d_1 u_1 + \ldots + d_n u_n.$$

Hence

$$v = c_1 v_1 + \ldots + c_m v_m + d_1 u_1 + \ldots + d_n u_n.$$

Then the list $v_1, \ldots, v_m, u_1, \ldots, u_n$ spans V and hence is a basis of V, as desired. \qed

Exercise 3.F.7 Suppose m is a positive integer. Show that the dual basis of the basis $1, x, \ldots, x^n$ of $\mathcal{P}_m(\mathbb{R})$ is $\varphi_0, \varphi_1, \ldots, \varphi_m$, where $\varphi_j(p) = \frac{p^{(j)}(0)}{j!}$. Here $p^{(j)}$ denotes the j^{th} derivative of p, with the understanding that the 0^{th} derivative of p is p.

Proof. From Proposition 3.98 we know that the dual basis is a basis of dual space. By definition of dual basis (3.96), we just need to check if

$$(0.1) \quad \varphi_j(x^k) = \begin{cases} 1 & (j = k) \\ 0 & (j \neq k) \end{cases}$$

Note that $\varphi_j(x^k) = \frac{(x^k)^{(j)}(0)}{j!}$, hence if $j = k$, $\varphi_j(x^k) = 1$, if $j \neq k$, $\varphi_j(x^k) = 0$. Therefore we know that $\varphi_0, \ldots, \varphi_m$ is the dual basis of $\mathcal{P}_m(\mathbb{R})$.

Exercise 3.F.8 Suppose m is a positive integer.
(a) Show that $1, x-5, \ldots, (x-5)^m$ is a basis of $P_m(\mathbb{R})$.
(b) What is the dual basis of the basis in part (a)?

Proof. (a) Define $\varphi_0, \varphi_1, \ldots, \varphi_m \in (P_m(\mathbb{R}))'$ by

$$
\varphi_j(p) = \frac{p^{(j)}(5)}{j!}.
$$

So suppose $a_0, \ldots, a_m \in F$ and

$$
a_0 + a_1(x-5) + \ldots + a_m(x-5)^m = 0.
$$

Then for $j = 0, 1, \ldots, m$, we have

$$
a_j = \varphi_j(a_0 + a_1(x-5) + \ldots + a_m(x-5)^m) = \varphi_j(0) = 0.
$$

Thus $a_0 = a_1 = \ldots = a_m = 0$. Hence $1, x-5, \ldots, (x-5)^m$ is a linearly independent list in $P_m(\mathbb{R})$ of length $m+1$, which equals the dimension of $P_m(\mathbb{R})$. Thus $1, x-5, \ldots, (x-5)^m$ is a basis of $P_m(\mathbb{R})$ (by 2.39).

(b) Let $\varphi_0, \varphi_1, \ldots, \varphi_m \in (P_m(\mathbb{R}))'$ be defined as in part (a). Then we have

$$
\varphi_j((x-5)^k) = \begin{cases}
1 & (j = k) \\
0 & (j \neq k)
\end{cases}
$$

From Proposition 3.98 we know that $\varphi_0, \varphi_1, \ldots, \varphi_m$ is the dual basis of the basis in part (a). □

Exercise 3.F.15 Suppose W is finite-dimensional and $T \in \mathcal{L}(V,W)$. Prove that $T' = 0$ if and only if $T = 0$.

Proof. First suppose $T = 0$. For any $\varphi \in W'$, then $T'((\varphi)) = \varphi \circ T = 0$, and thus $T' = 0$.

To prove the other direction, now suppose $T' = 0$. Thus

$$
0 = T'((\varphi)) = \varphi \circ T
$$

for every $\varphi \in W'$.

If $T \neq 0$, we can find some $v \in V$ such that $Tv = w \neq 0$. We can extend Tv to a basis Tv, w_2, \ldots, w_n of W. Now Proposition 3.5 implies that there exists a $\tilde{\varphi}$ such that $\tilde{\varphi}(Tv) = 1$ (and $\tilde{\varphi}(v_j)$ equals whatever we want for $j = 2, 3, \ldots, n$). Therefore $(T'(\tilde{\varphi}))(v) = \tilde{\varphi}(Tv) = 1$. Which contradicts the fact that $0 = T'((\varphi)) = \varphi \circ T$ for every $\varphi \in W'$. So we must have $T = 0$, as desired. □

Exercise 5.A.12 Define $T \in \mathcal{L}(P_4(\mathbb{R}))$ by

$$
(Tp)(x) = xp'(x)
$$

for all $x \in \mathbb{R}$. Find all eigenvalues and eigenvectors of T.

□
Answer. A typical element \(p \) of \(\mathcal{P}_4(\mathbb{R}) \) is given by expression
\[
p(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4,
\]
where \(a_0, \ldots, a_4 \in \mathbb{R} \).

With that expression, the eigenvalue-eigenvector equation \(Tp = \lambda p \), which in this case is \(xp'(x) = \lambda p(x) \), becomes
\[
a_1x + 2a_2x^2 + 3a_3x^3 + 4a_4x^4 = \lambda (a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4)
\]

Comparing coefficients in the equation above, we see that the eigenvalue-eigenvector equation is equivalent to the system of equations
\[
0 = \lambda a_0 \\
a_1 = \lambda a_1 \\
2a_2 = \lambda a_2 \\
3a_3 = \lambda a_3 \\
4a_4 = \lambda a_4.
\]

From the equations above, we can see that if \(j \in \{0, 1, 2, 3, 4\} \) and \(a_j \neq 0 \), then we have \(\lambda = j \) and \(a_k = 0 \) for any \(k \neq j \). Thus the eigenvalue of \(T \) are \(0, 1, 2, 3, 4 \) and the corresponding eigenvectors are of the form \(c, cx, cx^2, cx^3, cx^4 \), where \(c \in \mathbb{R} \) and \(c \neq 0 \).

Exercise 5.A.15 Suppose \(T \in \mathcal{L}(V) \). Suppose \(S \in \mathcal{L}(V) \) is invertible
(a) Prove that \(T \) and \(S^{-1}TS \) have the same eigenvalues.
(b) What is the relationship between the eigenvectors of \(T \) and the eigenvectors of \(S^{-1}TS \)?

Answer. Suppose \(v \in V \) and \(\lambda \in \mathbb{F} \). Then we have
\[
Tv = \lambda v \iff (S^{-1}TS)(S^{-1}v) = \lambda S^{-1}v
\]
This is because if \(Tv = \lambda v \), then \((S^{-1}TS)(S^{-1}v) = S^{-1}Tv = \lambda S^{-1}v \), on the other hand, if \((S^{-1}TS)(S^{-1}v) = \lambda S^{-1}v \), then \(\lambda v = \lambda S(S^{-1}v) = S((S^{-1}TS)(S^{-1}v)) = Tv \).

Thus we see that \(T \) and \(S^{-1}TS \) have the same eigenvalues, and furthermore, \(v \) is an eigenvector of \(T \) if and only if \(S^{-1}v \) is an eigenvector of \(S^{-1}TS \).

Exercise 5.A.18 Show that the operator \(T \in \mathcal{L}(\mathbb{C}^\infty) \) defined by
\[
T(z_1, z_2, \ldots) = (0, z_1, z_2, \ldots)
\]
has no eigenvalues.

Answer. The eigenvalue-eigenvector equation \(Tz = \lambda z \) for this operator is
\[
(0, z_1, z_2, \ldots) = (\lambda z_1, \lambda z_2, \lambda z_3, \ldots)
\]
which is equivalent to
\[
0 = \lambda z_1, z_1 = \lambda z_2, z_2 = \lambda z_3, \ldots
\]
The first equation implies \(z_1 = 0 \) or \(\lambda = 0 \). If \(\lambda = 0 \), then the rest of the equations implies \(0 = z_1 = z_2 = \ldots \), which eliminates 0 as the possible eigenvalue. If \(\lambda \neq 0 \), then \(z_1 = 0 \), then the rest of the equations also implies \(z_2 = z_3 = \ldots = 0 = z_1 \).
which eliminates all nonzero complex numbers \(\lambda \) as possible eigenvalues. Thus we conclude that \(T \) has no eigenvalues. \(\square \)

Exercise 5.A.20 Find all eigenvalues and eigenvectors of the backward shift operator \(T \in \mathcal{L}(F^\infty) \) defined by

\[
T(z_1, z_2, z_3, \ldots) = (z_2, z_3, \ldots)
\]

Answer. We will show that all \(\lambda \in F \) are eigenvalues of \(T \), and the set of eigenvectors of \(T \) with eigenvalue \(\lambda \) is the set \(V_\lambda = \{(z, \lambda z, \lambda^2 z, \ldots) \mid z \in F\} \).

First we show that if \(v \) is an eigenvector of \(T \), then \(v \in V_\lambda \) for some \(\lambda \). That is, we show that \(v = (z, \lambda z, \lambda^2 z, \ldots) \) for some \(z \) and some \(\lambda \). Suppose \(v = (z_1, z_2, z_3, \ldots) \) is an eigenvector for \(T \) with eigenvalue \(\lambda \). Then the eigenvalue equation \(T(v) = \lambda v \) takes the form

\[
(\lambda z_1, \lambda z_2, \lambda z_3, \ldots) = (z_2, z_3, z_4, \ldots)
\]

Since two vectors in \(F^\infty \) are equal if and only if their terms are all equal, this yields an infinite sequence of equations:

\[
z_2 = \lambda z_1, \quad z_3 = \lambda z_2, \ldots, \quad z_n = \lambda z_{n-1}, \ldots
\]

From this, we can repeatedly substitute \(z_n = \lambda z_{n-1} = \lambda^2 z_{n-2} = \ldots \), so in fact (by a simple induction)

\[
z_n = \lambda^{n-1} z_1
\]

So every eigenvector \(v \) with eigenvalue \(\lambda \) is of the form \(v = (z_1, \lambda z_1, \lambda^2 z_1, \ldots) \). Furthermore, for any \(z \in F \), if we set \(z_1 = z \), \(z_2 = \lambda z \), \ldots, \(z_n = \lambda^n z \), the vector

\[
v = (z, \lambda z, \lambda^2 z, \ldots)
\]

satisfies the equations above and is an eigenvector of \(T \) with eigenvalue \(\lambda \). Therefore, the eigenspace \(V_\lambda \) of \(T \) with eigenvalue \(\lambda \) is the set of vectors

\[
V_\lambda = \{(z, \lambda z, \lambda^2 z, \ldots) \mid z \in F \}.
\]

Finally, we show that every single \(\lambda \in F \) occurs as an eigenvalue of \(T \). Given \(\lambda \in F \), consider the vector \(v = (1, \lambda, \lambda^2, \ldots) \). Applying \(T \) to \(v \), we get

\[
T(v) = (1, \lambda, \lambda^2, \ldots) = (\lambda, \lambda^2, \lambda^3, \ldots) = \lambda(1, \lambda, \lambda^2, \ldots)
\]

Thus \(T(v) = \lambda v \) for this vector. We have thus shown that all \(\lambda \in F \) are eigenvalues for \(T \), and the eigenspace for \(\lambda \) is \(V_\lambda = \{(z, \lambda z, \lambda^2 z, \ldots) \mid z \in F \} \). \(\square \)

Exercise 5.A.22 Suppose \(T \in \mathcal{L}(V) \) and there exist nonzero vectors \(v \) and \(w \) in \(V \) such that

\[
Tv = 3w \quad \text{and} \quad Tw = 3v.
\]

Prove that 3 or \(-3\) is an eigenvalue of \(T \).

Proof. The equations above imply that

\[
T(v + w) = 3(v + w) \quad \text{and} \quad T(v - w) = -3(v - w).
\]

The vectors \(v + w \) and \(v - w \) cannot both be 0 (because otherwise we would have \(v = w = 0 \)). Thus the equations above imply that 3 or \(-3\) is an eigenvalue of \(T \). \(\square \)
Exercise 5.A.30 Suppose $T \in \mathcal{L}(\mathbb{R}^3)$ and $4, -5$ and $\sqrt{7}$ are the eigenvalues of T. Prove that there exists $x \in \mathbb{R}^3$ such that $Tx - 9x = (4, -5, \sqrt{7})$.

Proof. Since T has at most 3 distinct eigenvalues (by 5.13), the hypothesis imply that 9 is not an eigenvalue of T. Thus $T - 9I$ is surjective. In particular, there exists $x \in \mathbb{R}^3$ such that $(T - 9I)x = Tx - 9x = (4, -5, \sqrt{7})$. (The entries of this particular vector are a red herring: we could just as easily find a $y \in \mathbb{R}^3$ such that $Ty - 9y = (86, 75, 309)$ by the same argument.) □

Exercise 5.A.32 Suppose $\lambda_1, ..., \lambda_n$ is a list of distinct real numbers. Prove that the list $e^{\lambda_1 x}, ..., e^{\lambda_n x}$ is linearly independent in the vector space of real-valued functions on \mathbb{R}.

Proof. Let $V = \text{span}(e^{\lambda_1 x}, ..., e^{\lambda_n x})$, and define $T \in \mathcal{L}(V)$ by $Tf = f'$. This linear map does map V into V because $T(e^{\lambda_j x}) = \lambda_j e^{\lambda_j x}$.

This equation above also shows that for each $j = 1, ..., n$, the vector $e^{\lambda_j x}$ is an eigenvector of T with eigenvalue λ_j. Thus Proposition 5.10 implies that $e^{\lambda_1 x}, ..., e^{\lambda_n x}$ is linearly independent. □

Exercise 5.B.1 Suppose $T \in \mathcal{L}(V)$ and there exists a positive integer n such that $T^n = 0$.

(a) Prove that $I - T$ is invertible and that

$$(I - T)^{-1} = I + T + ... + T^{n-1}$$

(b) Explain how you would guess the formula above.

Proof. We have

$$(I - T)(I + T + ... + T^{n-1})$$

$$= I + T + ... + T^{n-1} - T - T^2 - ... - T^{n-1} - T^n$$

$$= I - T^n = I$$

since $T^n = 0$.

Similarly, we have

$$(I + T + ... + T^{n-1})(I - T)$$

$$= I + T + ... + T^{n-1} - T - T^2 - ... - T^{n-1} - T^n$$

$$= I - T^n = I$$

Therefore $(I - T)$ is invertible and $(I - T)^{-1} = I + T + ... + T^{n-1}$.

(b) If $r \in \mathbb{C}$ and $|r| < 1$, then we might be familiar with the usual formula for the sum of a geometric series:

$$(1 - r)^{-1} = 1 + r + r^2 + ... + r^n + r^{n+1} + ...$$

If we guess that in the formula above, we can replace 1 with I and r with T, then we would have

$$(I - T)^{-1} = I + T + ... + T^{n-1}$$
where the sum becomes finite because $0 = T^n = T^{n+1} = \cdots$.

Exercise 5.B.2 Suppose $T \in \mathcal{L}(V)$ and $(T - 2I)(T - 3I)(T - 4I) = 0$. Suppose λ is an eigenvalue of T. Prove that $\lambda = 2$ or $\lambda = 3$ or $\lambda = 4$.

Proof. Let $v \in V$ be a eigenvector of T corresponding to the eigenvalue λ. Then

$$0 = (T - 2I)(T - 3I)(T - 4I)v = (\lambda - 2)(\lambda - 3)(\lambda - 4)v.$$

Since $v \neq 0$, the equation above implies that

$$(\lambda - 2)(\lambda - 3)(\lambda - 4) = 0$$

Thus $\lambda = 2$ or $\lambda = 3$ or $\lambda = 4$, as desired. □

Question 1. Suppose U is a subspace of V such that $\dim V/U = 1$. Prove that there exists a linear functional $f \in V'$ such that

$$\text{null } f = U$$

Proof. Since V/U is a 1-dimensional linear space, we can construct an arbitrary nonzero linear map $g \in (V/U)'$. Definition 3.88 says we have a quotient map $\pi: V \to V/U$ which sends $v \in V$ to $v + U \in V/U$. Now let $f = g \circ \pi$. We claim that $\text{null } f = U$

On the one hand, for any $u \in U$, $\pi(u) = 0 + U = 0$ in V/U, so we have $f(u) = g(\pi(u)) = g(0) = 0$, therefore $\text{null } f \supset U$.

On the other hand, since $g \neq 0$, we can find $v + U \in V/U$ such that $g(v + U) \neq 0$, so $f(v) = g(\pi(v)) = g(v + U) \neq 0$. Since $\dim V/U = 1$, $v + U$ is the basis of V/U. Therefore for any $w \not\in U$, we can find a non-zero $\lambda \in \mathbb{F}$ and such that $\pi(w) = w + U = \lambda(v + U) = \lambda v + U$. So we have

$$f(w) = g(\pi(w)) = g(w + U) = g(\lambda(v + U)) = \lambda g(v + U) \neq 0$$

because $\lambda \neq 0$ and $g(v + U) \neq 0$. So $\text{null } f \subset U$.

Hence we have proved that $\text{null } f = U$, as desired. □

Question 2. Let $C^\infty(\mathbb{R})$ denote the vector space (over \mathbb{R}) of infinitely-differentiable real-valued functions $f: \mathbb{R} \to \mathbb{R}$.

a) Let U denote the subspace of $C^\infty(\mathbb{R})$ consisting of functions which vanish at 42 and at π:

$$U = \{ f \in C^\infty(\mathbb{R}) \mid f(42) = 0, f(\pi) = 0 \}$$

Prove that the quotient vector space $C^\infty(\mathbb{R})/U$ is finite dimensional. What is its dimension?
b) Let \(W \) denote the subspace of \(C^\infty(\mathbb{R}) \) consisting of functions which “vanish to second order at 0”:

\[
W = \{ f \in C^\infty(\mathbb{R}) \mid f(0) = 0, f'(0) = 0, f''(0) = 0 \}
\]

Prove that the quotient vector space \(C^\infty(\mathbb{R})/W \) is finite dimensional, and find a basis for \(C^\infty(\mathbb{R})/W \).

Proof. a) Define the linear transformation \(T : C^\infty(\mathbb{R}) \to \mathbb{R}^2 \) by

\[
T(f) = (f(42), f(\pi)).
\]

The kernel of \(T \) is

\[
\ker T = \{ f \in C^\infty(\mathbb{R}) \mid T(f) = 0 \}
= \{ f \in C^\infty(\mathbb{R}) \mid f(2) = 0, f(7) = 0 \}
= U.
\]

The Quotient Isomorphism Theorem (Thm 3.91(d)) thus tells us that \(T : C^\infty(\mathbb{R})/U \to \) \(\text{Image } T \) is an isomorphism, so we need to understand \(\text{Image } T \).

Choose two functions \(f, g \in C^\infty(\mathbb{R}) \) that satisfy \(T(f) = (1, 0) \) and \(T(g) = (0, 1) \), such as:

\[
f(x) = \frac{x - \pi}{42 - \pi},
g(x) = \frac{42 - x}{42 - \pi},
\]

Since

\[
f(42) = 1 \quad f(\pi) = 0
\]
\[
g(42) = 0 \quad g(\pi) = 1
\]

we have \(T(f) = (1, 0) \) and \(T(g) = (0, 1) \). This shows that \((1, 0) \in \text{Image } T \) and \((0, 1) \in \text{Image } T \). Since these are the standard basis vectors \(e_1 = (1, 0) \) and \(e_2 = (0, 1) \), they span \(\mathbb{R}^2 \), and so \(\text{Image } T = \mathbb{R}^2 \).

Since \(\text{Image } T = \mathbb{R}^2 \), the Quotient Isomorphism Theorem (Thm 3.91(d)) states that \(T : C^\infty(\mathbb{R})/U \to \mathbb{R}^2 \) is an isomorphism. Since \(C^\infty(\mathbb{R})/U \) and \(\mathbb{R}^2 \) are isomorphic, they have the same dimension: therefore \(C^\infty(\mathbb{R})/U \) has dimension 2.

b) Define the linear transformation \(S : C^\infty(\mathbb{R}) \to \mathbb{R}^3 \) by

\[
S(f) = (f(0), f'(0), f''(0)).
\]

The kernel of \(S \) is

\[
\ker S = \{ f \in C^\infty(\mathbb{R}) \mid S(f) = 0 \}
= \{ f \in C^\infty(\mathbb{R}) \mid f(0) = 0, f'(0) = 0, f''(0) = 0 \}
= W.
\]

The Quotient Isomorphism Theorem (Thm 3.91(d)) thus tells us that \(S : C^\infty(\mathbb{R})/W \to \) \(\text{Image } S \) is an isomorphism, so we need to understand \(\text{Image } S \). Consider the following functions in \(C^\infty(\mathbb{R}) \):

\[
f_1 = 1
\]
\[
f_2 = x - 1
\]

1 For example, if \(f(x) = x \) then \(T(f) = (42, \pi) \); if \(g(x) = e^x \) then \(T(g) = (e^{42}, e^\pi) \), if \(h(x) = \sin x \) then \(T(h) = (\sin 42, \sin \pi) \), etc.

2 Many other choices are possible.

3 For example, if \(f(x) = x^2 \) then \(S(f) = (0, 0, 2) \); if \(g(x) = e^x \) then \(S(g) = (1, 1, 1) \); if \(h(x) = \sin x \) then \(S(h) = (0, 1, 0) \), etc.
\[f_3 = x^2 - 2x + 1 \]

These three functions are infinitely differentiable, so they are in \(C^\infty(\mathbb{R}) \). Their only important properties are that

\[
\begin{align*}
 f_1(0) &= 1 & f_1'(0) &= 0 & f_1''(0) &= 0 \\
 f_2(0) &= 0 & f_2'(0) &= 1 & f_2''(0) &= 0 \\
 f_3(0) &= 0 & f_3'(0) &= 0 & f_3''(0) &= 1
\end{align*}
\]

This implies that

\[S(f_1) = e_1, \quad S(f_2) = e_2, \quad S(f_3) = e_3. \]

Therefore \(e_1, e_2, \) and \(e_3 \) are all in \(\text{Image}S \). Since \(e_1, e_2, e_3 \) is a basis for \(\mathbb{R}^3 \), this shows that \(\text{Image}S = \mathbb{R}^3 \).

Since \(\text{Image}S = \mathbb{R}^3 \), the Quotient Isomorphism Theorem (Thm 3.91(d)) states that \(\overline{S} : C^\infty(\mathbb{R})/W \to \mathbb{R}^3 \) is an isomorphism. Since \(C^\infty(\mathbb{R})/W \) and \(\mathbb{R}^3 \) are isomorphic, they have the same dimension: therefore \(C^\infty(\mathbb{R})/W \) has dimension 3.

Consider the elements \(v_1 = f_1 + W, \ v_2 = f_2 + W, \) and \(v_3 = f_3 + W \) in the quotient space \(C^\infty(\mathbb{R})/W \). We will show they are linearly independent. Assume that \(av_1 + bv_2 + cv_3 = 0 \) in \(C^\infty(\mathbb{R})/W \). The above formula shows that

\[\overline{S}(v_1) = \overline{S}(f_1 + W) = e_1, \quad \overline{S}(v_2) = \overline{S}(f_2 + W) = e_2, \quad \overline{S}(v_3) = \overline{S}(f_3 + W) = e_3. \]

Since \(\overline{S} \) is linear, \(\overline{S}(av_1 + bv_2 + cv_3) = ae_1 + be_2 + ce_3 \). But \(e_1, e_2, e_3 \) are linearly independent, so we conclude that \(a = b = c = 0 \). This shows that \(v_1, v_2, v_3 \) are linearly independent in the quotient space \(C^\infty(\mathbb{R})/W \). Since this vector space has dimension 3, this implies that \(v_1, v_2, v_3 \) is a basis for \(C^\infty(\mathbb{R})/W \).

Question 3. Let \(C^\infty(\mathbb{R}, \mathbb{C}) \) be the vector space (over \(\mathbb{C} \)) of complex-valued functions \(f : \mathbb{R} \to \mathbb{C} \) that are infinitely differentiable. Let \(V \) be the space of functions \(f \in C^\infty(\mathbb{R}, \mathbb{C}) \) satisfying the equation \(f'' = -f \):

\[V = \{ f \in C^\infty(\mathbb{R}, \mathbb{C}) \mid f'' = -f \} \]

- Assume without proof that \(\dim V \leq 2 \). Prove that the functions \(\sin x \) and \(\cos x \) both lie in \(V \), and moreover that \((\sin x, \cos x) \) form a basis for \(V \).
- Let \(D \) be the operator on \(C^\infty(\mathbb{R}, \mathbb{C}) \) defined by \(D(f) = f' \). Prove that \(V \) is an invariant subspace for \(D \).
- Now consider \(D \in L(V) \) as an operator on \(V \). Find a basis for \(V \) consisting of eigenvectors for \(D \). What are their eigenvalues?

Proof.

- Consider the functions \(\sin x \) and \(\cos x \). Then \(\sin''(x) = (\cos'(x)) = -\sin(x) \) and \(\cos''(x) = (-\sin(x))' = -\cos(x) \). Thus \(\sin(x), \cos(x) \in V \).

 To show that \((\sin x, \cos x) \) form a basis for \(V \), first we show that they are linearly independent. Suppose there are numbers \(a, b \in \mathbb{C} \) s.t. \(a \sin(x) + b \cos(x) = 0 \). Then, plugging in \(x = 0 \), we get \(b = 0 \) since \(\sin(0) = 0 \) and \(\cos(0) = 1 \). Plugging in \(x = \pi/2 \), we get \(a = 0 \) since \(\sin(\pi/2) = 1 \) and \(\cos(\pi/2) = 0 \). Thus \(\sin(x) \) and \(\cos(x) \) are linearly independent.

 Since \(\sin(x) \) and \(\cos(x) \) are linearly independent, the dimension of \(V \) must be at least 2. Since we were given that \(\dim V \) is at most 2, we conclude that \(\dim V = 2 \). Thus \(\sin(x) \) and \(\cos(x) \) form a basis for \(V \).

- Let \(D \) be the operator on \(C^\infty(\mathbb{R}, \mathbb{C}) \) defined by \(D(f) = f' \). To show that \(V \) is invariant under \(D \), we must show that if \(f \in V \) then \(Df \in V \). So suppose that \(f \in V \), and set \(g = D(f) \). Then \(f'' = -f \). Differentiating both sides
of this equation, we get that $f''' = -f'$, or in other words $g'' = -g$. Thus $g = D(f)$ lies in V. Therefore, V is invariant under D.

- Now consider $D \in \mathcal{L}(V)$ as an operator on V. Find a basis for V consisting of eigenvectors for D. What are their eigenvalues?

 The properties $(\sin x)' = \cos x$ and $(\cos x)' = -\sin x$ mean that
 \[
 D(a \sin(x) + b \cos(x)) = -b \sin(x) + a \cos(x).
 \]
 We have seen a similar linear transformation in class, namely $T: \mathbb{R}^2 \to \mathbb{R}^2$ such that $T(x, y) = (-y, x)$.

 However that operator has no eigenvalues because it is on a real vector space, and its minimal polynomial $p(x) = x^2 + 1$ has no real roots. In contrast, here we are working over the complex numbers, so we might imagine that the eigenvalues would be the complex roots of $p(x) = x^2 + 1$, namely i and $-i$.

 The eigenvalue equation $D(a \sin(x) + b \cos(x)) = i(a \sin(x) + b \cos(x))$ can be solved to find
 \[
 f = \cos(x) + i \sin(x)
 \]
 and similarly $D(a \sin(x) + b \cos(x)) = -i(a \sin(x) + b \cos(x))$ can be solved to find
 \[
 g = \cos(x) - i \sin(x).
 \]
 Then we can check that
 \[
 D(f) = -\sin(x) + i \cos(x) = if
 \]
 and
 \[
 D(g) = -\sin(x) - i \cos(x) = -ig.
 \]
 Thus f and g are eigenvectors for D with eigenvalues i and $-i$. Since they have distinct eigenvalues, Theorem 5.6 in the book implies that they are linearly independent. Since $\dim V \leq 2$, any spanning list of length 2 forms a basis for V.

 Remark by TC: you have probably learned what the eigenvectors of D as an operator on $\mathbb{C}^\infty(\mathbb{R}, \mathbb{C})$ are in a previous class. For the eigenvalue a, the eigenvalue equation $D(f) = af$ becomes the differential equation $f' = af$, and you may already know that the solutions to this equation are (constant multiples of)
 \[
 f(x) = e^{ax}
 \]
 since the chain rule implies that
 \[
 (e^{ax})' = a \cdot e^{ax}.
 \]
 But the functions f and g you found above are eigenvectors with eigenvalues $a = i$ and $a = -i$, so they must be of the form Ce^{ix} and Ce^{-ix}. We can find the constants by plugging in 0, since $Ce^{i\cdot 0} = C$. By plugging in $f(0) = \cos(0) + i \sin 0 = 1 + i \cdot 0 = 1$ and $g(0) = \cos(0) - i \sin 0 = 1 - i \cdot 0 = 1$ we see that the constants are 1 for both f and g. Therefore you have proved the famous formula of Euler:
 \[
 e^{ix} = \cos x + i \cdot \sin x \quad e^{-ix} = \cos x - i \cdot \sin x.
 \]
In particular, if we evaluate the first eigenfunction at π we get
\[e^{i\pi} = \cos \pi + i \cdot \sin \pi = -1 + i \cdot 0, \]
or in other words
\[e^{i\pi} = -1. \]