Math 113: Linear Algebra and Matrix Theory
 Thomas Church (tfchurch@stanford.edu)
 http://math.stanford.edu/~church/teaching/113-F15

Homework 4

Due Wednesday, October 21 in class.

Do all the following exercises, but write up only the unstarred exercises and the questions below. (Starred exercises are valuable and worth working out, but they will not be collected or graded.)

3E.13*						
3F.7*	$3 \mathrm{~F} .8^{*}$	3 F .15				
5A.12*	$5 \mathrm{~A} .15^{*}$	$5 \mathrm{~A} .18^{*}$	$\mathbf{5 A} .20$	$\mathbf{5 A} .22$	$\mathbf{5 A} .30$	$5 \mathrm{~A} .32^{*}$
5B.1*	5 B .2					

Question 1. Suppose U is a subspace of V such that $\operatorname{dim} V / U=1$.
Prove that there exists a linear functional $f \in V^{\prime}$ such that

$$
\text { null } f=U . \quad(\text { typo corrected here })
$$

(Note that V is not assumed to be finite-dimensional, so we cannot do this by choosing a basis.)

Question 2. Let $C^{\infty}(\mathbb{R})$ denote the vector space (over \mathbb{R}) of infinitely-differentiable ${ }^{1}$ real-valued functions $f: \mathbb{R} \rightarrow \mathbb{R}$.
a) Let U denote the subspace of $C^{\infty}(\mathbb{R})$ consisting of functions which vanish at 42 and at π (you do not have to prove that U is a subspace):

$$
U=\left\{f \in C^{\infty}(\mathbb{R}) \mid f(42)=0, f(\pi)=0\right\}
$$

Prove that the quotient vector space $C^{\infty}(\mathbb{R}) / U$ is finite-dimensional. What is its dimension? (Note that $C^{\infty}(\mathbb{R})$ itself is very infinite-dimensional!)
b) Let W denote the subspace of $C^{\infty}(\mathbb{R})$ consisting of functions which "vanish to second order at 0 ":

$$
W=\left\{f \in C^{\infty}(\mathbb{R}) \mid f(0)=0, f^{\prime}(0)=0, f^{\prime \prime}(0)=0\right\}
$$

Prove that the quotient vector space $C^{\infty}(\mathbb{R}) / W$ is finite-dimensional, and find a basis for $C^{\infty}(\mathbb{R}) / W$.

[^0]Question 3. Let $C^{\infty}(\mathbb{R}, \mathbb{C})$ be the vector space (over \mathbb{C}) of complex-valued functions $f: \mathbb{R} \rightarrow \mathbb{C}$ that are infinitely differentiable. Let V be the subspace consisting of functions $f \in C^{\infty}(\mathbb{R}, \mathbb{C})$ satisfying the differential equation $f^{\prime \prime}=-f$:

$$
V=\left\{f \in C^{\infty}(\mathbb{R}, \mathbb{C}) \mid f^{\prime \prime}=-f\right\}
$$

(You do not have to prove that V is a subspace of $C^{\infty}(\mathbb{R}, \mathbb{C})$.)
If you take a course on differential equations, you'll learn how to prove that the space of solutions V is at most 2-dimensional, from the form of the differential equation $f^{\prime \prime}=-f$. However, since this is a linear algebra course, just trust me on this, and assume without proof that $\operatorname{dim} V \leq 2$.
a) Prove that the functions $\sin x$ and $\cos x$ both lie in V, and moreover that $(\sin x, \cos x)$ forms a basis for V. ${ }^{2}$
b) Let D be the operator on $C^{\infty}(\mathbb{R}, \mathbb{C})$ defined by $D(f)=f^{\prime}$. Prove that V is an invariant subspace for D.
c) Now consider $D \in \mathcal{L}(V)$ as an operator on V (still defined by $\left.D(f)=f^{\prime}\right)$. Find a basis for V consisting of eigenvectors for D. What are their eigenvalues?

[^1]
[^0]: ${ }^{1}$ A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is "infinitely differentiable" if f is continuous, its derivative f^{\prime} exists and is continuous, its derivative $f^{\prime \prime}$ exists and is continuous, and so on. Almost all the standard functions you know are infinitely differentiable: for example, all polynomials, exponentials, sin, cos, etc. You do not need to prove that $C^{\infty}(\mathbb{R})$ or $C^{\infty}(\mathbb{R}, \mathbb{C})$ is a vector space; in fact, you shouldn't have to worry about the details of $C^{\infty}(\mathbb{R})$ at all.

[^1]: ${ }^{2}$ Remember your derivatives: $(\sin x)^{\prime}=\cos x$, and $(\cos x)^{\prime}=-\sin x$.

