
1. Math 113 Homework 3 Solutions

By Guanyang Wang, with edits by Prof. Church.

Exercises from the book.
Exercise 3B.2 Suppose V is a vector space and S, T ∈ L(V, V ) are such that

range S ⊂ null T.

Prove that (ST )2 = 0.

Proof. Suppose v ∈ V . Then

(ST )2v = ST (S(Tv))

Here we have S(Tv) ∈ range S ⊂ null T , thus T (S(Tv)) = 0. This implies (ST )2v =
ST (S(Tv)) = 0, so we have (ST )2 = 0. �

Exercise 3B.12 Suppose V is finite dimensional and that T ∈ L(V,W ). Prove that there exists
a subspace U of V such that U ∩ nullT = {0} and rangeT = {Tu | u ∈ U}.

Proof. Proposition 2.34 says that if V is finite dimensional and W is a subspace of V then we can
find a subspace U of V for which V = W ⊕ U . Proposition 3.14 says that nullT is a subspace of
V . Setting W = nullT , we can apply Prop 2.34 to get a subspace U of V for which

V = nullT ⊕ U

Now we want to prove any subspace U for which V = nullT ⊕ U satisfies the desired property.
Since V = nullT ⊕ U , we already have nullT ∩ U={0}. So we just need to show that rangeT =
{Tu | u ∈ U}. First we show that rangeT ⊂ {Tu | u ∈ U}. So let w ∈ rangeT . That means there
is some v ∈ V for which T (v) = w. Since v ∈ V and we have that V = nullT ⊕ U , we can find
vectors n ∈ nullT and u ∈ U for which v = n+ u. Thus,

T (v) = T (n) + T (u)

= 0 + T (u) since n ∈ nullT

We had that w = T (v). So, w = T (u) for some u ∈ U . That means that w ∈ {Tu | u ∈ U}. Thus
rangeT ⊂ {Tu | u ∈ U}.

Now we show that {Tu | u ∈ U} ⊂ rangeT . But for any element u ∈ U , u is also in V as
U ⊂ V . Thus Tu is in the image of T by definition. Therefore {Tu | u ∈ U} ⊂ rangeT .

So we have shown that rangeT = {Tu | u ∈ U}. Thus, there exists a subspace U of V s.t.
V = nullT ⊕ U and rangeT = {Tu | u ∈ U}.

�

Exercise 3.B.20 Suppose W is finite-dimensional and T ∈ L(V,W ). Prove that T is injective
if and only if there exists S ∈ L(W,V ) such that ST is the identity map on V .

Proof. First suppose T is injective. Define S1 : rangeT → V by

S1(Tv) = v

because T is injective, each element of rangeT can be represented in the form Tv in only one
way, so T is well defined.

First we will check S1 is a linear map from T to V . For any r ∈ F and Tx, Ty ∈ rangeT , we
have
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S1(Tx+ Ty) = S1(T (x+ y))

= x+ y

= S1(Tx) + S1(Ty)

and

S1(rTx) = S1(T (rx))

= rx

= rS1(Tx)

Therefore we know S1 is a linear map from rangeT to V . Using Exercise 3.A.11 in our last
homework. We know S1 can be extended to S ∈ L(W,V ), such that for any u ∈ rangeT , we have
Su = S1u. For any v ∈ V , since Tv ∈ rangeT , (ST )v = S(Tv) = S1(Tv) = v. Thus ST is the
identity map on V , as we desired.

To prove the implication in the other direction, now suppose there exists S ∈ L(W,V ) such that
ST is the identity map on V . If u, v ∈ V are such that Tu = Tv, then

u = (ST )u = S(Tu) = S(Tv) = (ST )v = v.

Hence u = v. Thus T is injective, as desired. �

Exercise 3.B.21 Suppose W is finite-dimensional and T ∈ L(V,W ). Prove that T is surjective
if and only if there exists S ∈ L(W,V ) such that TS is the identity map on V .

Proof. First suppose T is surjective. Thus W , which equals rangeT is finite-dimensional (by
Proposition 3.22). Let w1, ..., wm be a basis of W . Since T is surjective, for each j there exists
vj ∈ V such that Tvj = wj . By Proposition 3.5, there exists a unique linear map S : W → V such
that

Swj = vj

.
Hence for any w ∈W , w = a1w1 + ...+ amwm for some a1, ..., am ∈ F . We have

TS(w) = T (S(a1w1 + ...+ amwm))

= T (a1Sw1 + ...+ amSwm)

= T (a1v1 + ...+ amvm)

= a1T (v1) + ...+ amT (vm)

= a1w1 + ...+ amwm

= w

Hence we have TS is an identity map on W , as desired.
To prove the implication in the other direction, assume that there is some S ∈ L(W,V ) such that

TS is an identity map on W. Then for any w ∈W , we have that w = (TS)w = T (Sw) ∈ rangeT .
So w is in the range of T , so T is surjective. �

Exercise 3.B.29 Suppose that T ∈ L(V, F ). Suppose u ∈ V is not in nullT . Prove that

V = nullT ⊕ {au | a ∈ F}
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Proof. To show that V = nullT ⊕ {au | a ∈ F}, we need to show that V = nullT + {au | a ∈ F}
and that nullT ∩ {au | a ∈ F} = {0}.

First we show that V = nullT + {au | a ∈ F}. Let v ∈ V . We need to find n ∈ nullT and
w ∈ {au | a ∈ F} for which v = n+ w. Suppose T (v) = a ∈ F , and that T (u) = b ∈ F. We know
that b 6= 0 because u is not in nullT . Thus, b has an inverse in F. Let c = ab−1 ∈ F. Note that
this means c times b gives back a. So,

T (cu) = cT (u)

= cb

= a

Thus, T (cu) = T (v). Let n = v − cu. Then T (n) = T (v)− T (cu) = 0. Therefore, n ∈ nullT . Set
w = cu. Then w ∈ {au | a ∈ F}, and v = n + w. So we can write v as the sum of elements of
nullT and {au | a ∈ F}. Therefore, V = nullT + {au | a ∈ F}.

Next we show that nullT ∩ {au | a ∈ F} = {0}. Suppose v ∈ nullT ∩ {au | a ∈ F}. Then
v ∈ {au | a ∈ F}, so v = au for some a ∈ F.

Since v ∈ nullT , T (v) = 0. So T (au) = 0. But T (au) = aT (u). Since aT (u) = 0, either a = 0
or T (u) = 0. But u is not in nullT , so T (u) 6= 0. This means a must equal 0. So v = au implies
that v = 0. Therefore, nullT ∩ {au | a ∈ F} = {0}.

Since V = nullT + {au | a ∈ F} and that nullT ∩ {au | a ∈ F} = {0}, we have that V =
nullT ⊕ {au | a ∈ F}. �

Exercise 3C.3 Suppose V and W are finite-dimensional and T ∈ L(V,W ). Prove that there
exist a basis of V and a basis of W such that with respect to these bases, all entries of M(T ) are
0 except the entries in row j, column j, equal 1 for 1 ≤ j ≤ dim rangeT .

Proof. Let u1, ..., um be a basis of nullT . Extend u1, ..., um to a basis u1, ..., um, v1, ..., vn of V .
Then Tv1, ..., T vn is a basis of rangeT , as we have proved in the proof of Theorem 3.22. Therefore
n = dim rangeT .

Because Tv1, ..., T vn is a basis of rangeT , this list is linearly independent in W . Extend the
linearly independent list Tv1, ..., T vn to a basis Tv1, ..., T vn, w1, ..., wp of W .

With respect to the basis v1, ..., vn, u1, ..., um of V (note that the v’s now come before the u’s)
and the basis Tv1, ..., T vn, w1, ..., wp of W , the matrix of T has the desired form. Since Tvi = 1·Tvi
for any i ∈ {1, ..., n}, we have all the entries in the first n columns of the matrix are 0 except the
entries in row i, column i, equal 1 for 1 ≤ i ≤ n = dim rangeT . Tuj = 0 for any j ∈ {1, ...,m},
therefore all the entries in the other m columns of the matrix are 0. �

Exercise 3C.4 Suppose v1, ..., vm is a basis of V and W is finite-dimensional. Suppose T ∈
L(V,W ). Prove that there exists a basis w1, ..., wn of W such that all the entries in the first column
of M(T ) (with respect to the basis v1, ..., vm and w1, ..., wn) are 0 except for possibly a 1 in the
first row, first column.

Proof. Suppose Tv1 = 0, then for any basis w1, ..., wn of W , it will satisfy the requirement above
since Tv1 = 0 = 0w1 + ...+ 0wn.

Suppose Tv1 6= 0, then let w1 = Tv1 and extend w1 to a basis w1, ..., wn of W . Then with
respect to the basis v1, ..., vm and w1, ..., wn, the first column of the matrix are all 0 expect for a
1 in the first row, first column. �

Exercise 3C.5 Suppose w1, ..., wn is a basis of W and V is finite-dimensional. Suppose T ∈
L(V,W ). Prove that there exists a basis v1, ..., vm such that all the entries in the first row ofM(T )
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(with respect to the basis v1, ..., vm and w1, ..., wn) are 0 except for possibly a 1 in the first row,
first column.

Proof. If rangeT ⊂ span(w2, ..., wn), then the first row ofM(T ) will consist all 0’s for every choice
of basis of V (using, of course, w1, ..., wn as basis of W ).

Thus suppose rangeT 6⊂ span(w2, ..., wn). Let ũ1 ∈ V be such that T ũ1 /∈ span(w2, ..., wn).
Because w1, ..., wn is a basis of W , we can write

T ũ1 = c̃1w1 + ...+ c̃nwn

for some c̃1, ..., c̃n ∈ F . Since T ũ1 /∈ span(w2, ..., wn), we know that c̃1 6= 0
Let u1 = (c̃1)−1ũ1, we have Tu1 = w1 + c2w2 + ...+ cnwn, here cl = (c̃1)−1c̃l for l ≥ 2.
Extend u1 to a basis u1, u2, ..., um of V . For each k ∈ 2, ...m, we can write

Tuk = a1,kw1 + ...+ an,kwn.

Thus
T (uk − a1,ku1) = (a2,k − a1,kc2)w2 + ...+ (an,k − a1,kcn)wn

Now we are going to prove u1, u2 − a1,2u1, ..., um − a1,mu1 is a basis of V .
First, suppose there is b1, ...bm such that

b1u1 + b2(u2 − a1,2u1) + bm(um − a1,mu1) = 0

The equation above equals:

b2u2 + b3u3 + ...+ bmum + (b1 − b2a1,2 − ...− bma1,m)u1 = 0

Therefore we have b2 = b3 = ... = bm = 0 and b1 = 0 since u1, u2, ..., um is linearly independent.
Meanwhile u1, u2−a1,2u1, ..., um−a1,mu1 is of length m, which equals the dimension of V , Propo-
sition 2.39 implies that u1, u2−a1,2u1, ..., um−a1,mu1 is a basis of V . Let v1 = u1, vj = uj−a1,ju1
for j ≥ 2. With respect to the basis v1, ..., vm of V and w1, ..., wn of W , we see that the first row
of M(T ) consists of all 0’s except for a 1 in row 1, column 1. �

Exercise 3.D.7 Suppose V and W are finite-dimensional. Let v ∈ V . Let

E = {T ∈ L(V,W ) : Tv = 0}
(a) Show that E is a subspace of L(V,W ).

(b) Suppose v 6= 0. What is dimE

Proof. (a) First, the zero element in L(V,W ) is the map z : V →W defined by z(x) = 0 ∈W for
any x ∈ V , so we have z(v) = 0, therefore the zero element is contained in E.

Next, for any f, g ∈ E and λ ∈ F, (f + g)(v) = f(v) + g(v) = 0 since f(v) = g(v) = 0.
(λf)(v) = λf(v) = λ0 = 0, hence f + g ∈ E, λf ∈ E. Thus we know E is a subspace of L(V,W )
(b) Define F : L(W,V )→W by

F (T ) = Tv

First we check F is a linear map. For any f, g ∈ E and λ ∈ F, F (f + g) = (f + g)(v) =
f(v) + g(v) = F (f) + F (g), F (λf) = (λf)(v) = λf(v) = λF (f), so we know that F is linear.

Note that nullF = E by definition. Note also that F is surjective (as follows from Proposition
3.5). Now

dimE = dimF

= dimL(W,V )− dim rangeF

= (dimV )(dimW )− dimW

when the second equality follows from the Fundamental Theorem of Linear Maps (Theorem 3.22),
and the last equality follows from Proposition 3.61.



5

Thus
dimE = (dimV )(dimW )− dimW

�

Exercise 3.D.9 Suppose that V is finite dimensional and S, T ∈ L(V ). Prove that ST is
invertible if and only if both S and T are invertible.

Proof. Let S, T ∈ L(V ). Suppose ST is invertible. We need to show that S and T are both
invertible.

Since ST is invertible, there is a maps R : V → V s.t. R(ST ) = I. Composition of maps is
associative, so the first equation means

(RS)T = I

Since L(V ) = L(V, V ) by definition, and since V is finite dimensional, the previous exercise (Ex-
ercise 3.B.20) implies that since there is a linear function, RS for which (RS)T = I, we must have
that T is injective. By Theorem 3.69, since V is finite dimensional, T is injective iff it is invertible.
Therefore T is invertible.

Since T is invertible, we can write S = STT−1. Multiplying both sides of this equation by R
on the left, we get RS = T−1. Multiplying by T on the left, we get that T (RS) = TT−1. So,
(TR)S = I. Again, Exercise 3.B.20 implies that since we have a linear function, TR for which
(TR)S = I, then S is injective. Then Theorem 3.69 implies that since S is injective, it is invertible.

Thus, if ST is invertible, so are S and T .
Suppose S, T are both invertible. Then we show that (ST )−1 = T−1S−1.

(T−1S−1)ST = T−1(S−1S)T

= T−1T

= I

and

ST (T−1S−1) = S(TT−1)S−1

= S−1S

= I

Thus (ST )−1 = T−1S−1, so ST is invertible. �

Exercise 3.D.10 Suppose that V is finite dimensional and S, T ∈ L(V ). Prove that ST = I
iff TS = I.

Proof. Note that since S and T are arbitrary linear functions, we only need to show that ST = I
implies TS = I (the other direction follows by switching the labels of our linear transformations).
So suppose ST = I. By Exercise 3.B.20, ST = I implies T is injective. Since V is finite dimen-
sional, Theorem 3.21 implies T is invertible.

Since ST = I, we can multiply this equation by T on the left to get

TST = T

Multiplying both sides of this equation by T−1 on the right, we get

(TST )T−1 = I

Since function composition is associative, (TST )T−1 = TS(TT−1). So we really have

TS = I

as required. �
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Exercise 3.D.16 Suppose that V is finite dimensional and T ∈ L(V ). Prove that T is a scalar
multiple of the identity iff ST = TS for every S ∈ L(V ).

Proof. Suppose T = aI for some a ∈ F. Let S ∈ L(V ). Then S(aI)(v) = S(av) = aS(v) and
aI(S(v)) = aS(v). Thus ST = TS for each S ∈ L(V ).

Now suppose ST = TS for each S ∈ L(V ). Since V is finite dimensional, let v1, . . . , vn be a
basis for V . Define maps Sij : V → V by

Sij(a1v1 + · · ·+ anvn) = aivj

Clearly, this is a linear map. Now, for each vi, let

T (vi) = ai1v1 + ai2v2 + · · ·+ ainvn

Then choosing numbers i and j between 1 and n,

SijT (vi) = aiivj while

TSij(vi) = T (vj)

= aj1v1 + · · ·+ ajnvn

So, since SijT = TSij ,

aiivj = aj1v1 + · · ·+ ajnvn

Since v1, . . . , vn form a basis, these two sums are equal iff the coefficients are equal. On the left
hand side, only the coefficient on vj is non-zero. On the right hand side, that coefficient is ajj .
Thus, ajk = 0 for all k 6= j and ajj = aii

Since i and j were chosen arbitrarily, we get that aij = 0 for all i 6= j and aii = ajj for all i and
j. Let a = a11 (this is also equal to aii for any i, since all the aii are equal). Then we showed that

T (vi) = aiivi

= avi

for each i.
So, if v = b1v1 + · · ·+ bnvn ∈ V , then Tv = b1T (v1) + · · ·+ bnT (vn). Thus,

Tv = b1(av1) + · · ·+ bn(avn)

= a(b1v1 + · · ·+ bnvn)

= av

Thus, T = aI, so we are done. �



7

Question 1. Assume that T ∈ L(V ). Recall that T 2 denotes the composition T ◦ T .

a) Give an example of a vector space V and a linear operator T ∈ L(V ) such that T 2 = T . (Not
T = 1 or 0.)

b) Prove that if T 2 = T then V = nullT ⊕ null(T − I).
c) Prove that if V = nullT + null(T − I) then T 2 = T .
d) Give an example of a vector space V and a linear operator T ∈ L(V ) such that T 2 = −I.

Proof.

a) First we give an example of a vector space V and a linear operator T ∈ L(V ) such that T 2 = T .
Let V = R2 and let T be the linear map given by

T (x, y) = (x+ y, 0)

Then T 2(x, y) = T (x+ y, 0) = (x+ y, 0). So T (x, y) = T 2(x, y) for all (x, y) ∈ R2.
b) Next we prove that if T 2 = T then V = nullT ⊕ null(T − I).

We have that null(T − I) = {v | (T − I)v = 0}. But (T − I)(v) = 0 iff Tv = Iv, that is, iff
Tv = v. Thus,

null(T − I) = {v | Tv = v}
We want to show that V = nullT ⊕ null(T − I). To do this, we first need to show that

V = nullT + null(T − I). Let v ∈ V . We need to show that we can find n ∈ nullT and
u ∈ null(T − I) s.t. v = n+ u. Since T (Tv) = Tv, we have that Tv ∈ null(T − I).

Consider the vector Tv − v. Then

T (Tv − v) = T 2v − Tv = 0

since T 2v = Tv. Thus, for any v, Tv − v ∈ nullT .
We can write v = Tv − (Tv − v) where Tv ∈ null(T − I) and −(Tv − v) ∈ nullT . Thus

V = nullT + null(T − I).
Next we need to show that nullT ∩ null(T − I) = {0}. Suppose v ∈ nullT ∩ null(T − I).

Then v ∈ null(T − I) implies that Tv = v. On the other hand, v ∈ nullT implies that Tv = 0.
Thus v = 0. Therefore nullT ∩ null(T − I) = {0}.

Since nullT ∩ null(T − I) = {0} and V = nullT + null(T − I) we have shown that V =
nullT ⊕ null(T − I).

c) We want to show that if V = nullT ⊕ null(T − I) then T 2 = T . Let v ∈ V . Since V =
nullT ⊕ null(T − I), we can find n ∈ nullT and u ∈ null(T − I) s.t. v = n+ u. Thus, we have

Tv = T (n+ u)

= Tn+ Tu

= 0 + u

So Tv = u, and since we showed above that u ∈ null(T − I) implies Tu = u,

T 2v = Tu

= u

So T 2v = u, as well. Thus V = nullT ⊕ null(T − I) implies T 2v = Tv for all v ∈ V .
d) Let V = R2 and let T ∈ L(V ) be defined by T (x, y) = (y,−x). Then T 2(x, y) = T (y,−x) =

(−x,−y). Thus T 2(x, y) = −(x, y) for all (x, y) ∈ R2, so T 2 = −I. (Note that the linear
operator T is just rotation by 90 degrees about the origin. Thus, squaring it, i.e. doing it twice,
gives rotation by 180 degrees, which sends each vector to its opposite, negative, vector.)

�
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Question 2. Let V,W be finite dimensional, and consider T ∈ L(V,W ) and S ∈ L(W,U).

a) Prove that dim(rangeST ) ≤ dim(rangeT ).
b) Prove that dim(rangeST ) = dim(rangeT ) if and only if

rangeT + nullS = rangeT ⊕ nullS

c) Prove that dim(nullST ) ≤ dim(nullS) + dim(nullT ).
d) Bonus: give a description (in terms of conditions on T, S, V , etc) of when dim(nullST ) =

dim(nullS) + dim(nullT ).

[Proof by TC.] Before tackling these questions themselves we state and prove some lemmas,
since we will use them in multiple parts. This will simplify our proofs.

First, we can restrict the domain of S to obtain a map just from rangeT to U ,

SranT : rangeT → U

where SranT is defined to be the map from rangeT to U defined by SranT (w) = S(w) for each
w ∈ rangeT . Note that since S is linear, SranT must be linear as well.

Lemma 1. rangeSranT = rangeST .

Proof. Suppose that v ∈ rangeST . Then there is some v′ ∈ V s.t. v = STv′. Since Tv′ ∈ rangeT ,
we have that S(Tv′) = SranT (Tv′). Thus v ∈ rangeST implies v ∈ rangeSranT .

Suppose v ∈ rangeSranT . Then there is a w ∈ rangeT s.t. v = S(w). Since w ∈ rangeT ,
there is a v′ ∈ V s.t. Tv′ = w. Thus v = STv′. So v ∈ rangeSranT implies v ∈ rangeST . Thus
rangeST = rangeSranT . �

Lemma 2. nullSranT = rangeT ∩ nullS.

Proof.

nullSranT =
{
w ∈ rangeT

∣∣SranT (w) = 0
}

=
{
w ∈ rangeT

∣∣S(w) = 0
}

=
{
w ∈W

∣∣w ∈ rangeT and S(w) = 0
}

=
{
w ∈W

∣∣w ∈ rangeT
}
∩
{
w ∈W

∣∣S(w) = 0
}

= rangeT ∩ nullS

�

Lemma 3. dim rangeT = dim(rangeT ∩ nullS) + dim rangeST .

Proof. Note that since W is finite dimensional, rangeT is finite dimensional. Therefore the Fun-
damental Theorem of linear maps (Theorem 3.22) applied to SranT states:

dim rangeT = dim nullSranT + dim rangeSranT

Lemma 1 tells us that rangeSranT = rangeST , and Lemma 2 tells us that nullSranT = rangeT ∩
nullS. Substituting these, we obtain the desired equation. �

Lemma 4. dim nullST = dim nullT + dim(rangeT ∩ nullS)

Proof. By the Fundamental Theorem of linear maps applied to T we have

dimV = dim nullT + dim rangeT.

Using Lemma 3 to subsitute for dim rangeT , this becomes

(∗) dimV = dim nullT + dim(rangeT ∩ nullS) + dim rangeST

However, applying Fundamental Theorem of linear maps to ST gives that

(∗∗) dimV = dim nullST + dim rangeST
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Subtracting (∗∗) from (∗) yields

0 = dim nullT + dim(rangeT ∩ nullS)− dim nullST

which becomes

dim nullST = dim nullT + dim(rangeT ∩ nullS)

as required. �

We now begin the proofs of Question 2(a)–(d).

a) We need to show that dim(rangeST ) ≤ dim(rangeT ). By Lemma 3, we have

dim rangeST = dim rangeT − dim(rangeT ∩ nullS).

Since the dimension of rangeT ∩ nullS must be ≥ 0, this implies dim rangeT ≥ dim rangeST
as required. 1 �

b) By Lemma 3, we have dim rangeST = dim rangeT−dim(rangeT∩nullS). Therefore dim rangeST =
dim rangeT if and only if dim(rangeT ∩ nullS) = 0. Since the only 0-dimensional vector space
is {0}, this holds if and only if rangeT ∩ nullS = {0}. But Proposition 1.45’ says that for two
subspaces U,W

U ∩W = {0} ⇐⇒ U +W = U ⊕W.
Therefore applying Proposition 1.45’ we have

dim rangeST = dim rangeT ⇐⇒ rangeT ∩ nullS = {0}
⇐⇒ rangeT + nullS = rangeT ⊕ nullS,

as required. 2 �
c) By Lemma 4 we know that dim nullST = dim nullT + dim(rangeT ∩ nullS). Since rangeT ∩

nullS is a subspace of nullS, Prop. 2.15 states that dim(rangeT ∩ nullS) ≤ dim nullS. There-
fore

dim(nullST ) = dim nullT + dim(rangeT ∩ nullS) ≤ dim(nullT ) + dim(nullS)

as required. �
d) I claim that dim(nullST ) = dim(nullT ) + dim(nullS) if and only if Null S ⊂ImageT.

By Lemma 4, dim(nullST ) = dim nullT + dim(rangeT ∩ nullS). This will be equal to
dim(nullT )+dim(nullS) if and only if dim(rangeT ∩nullS) = dim(nullS). But rangeT ∩nullS
is a subspace of nullS, so by Exercise 2.C.1 on HW2 we know that

dim(rangeT ∩ nullS) = dim nullS ⇐⇒ rangeT ∩ nullS = nullS.

1Alternate proof of 2a by TC, not using lemmas: By Fundamental Theorem of linear maps applied to ST ,

dim(rangeST ) = dimV − dim(nullST ). By Fundamental Theorem of linear maps applied to T , dim(rangeT ) =
dimV − dim(nullT ). We saw in class that nullT ⊂ nullST , so by Prop. 2.15, dim(nullT ) ≤ dim(nullST ).
Therefore −dim(nullST ) ≤ − dim(nullT ) [negating reverses inequalities]. Adding dimV to both sides gives the

desired inequality:

dim(rangeST ) = dimV − dim(nullST ) ≤ dimV − dim(nullT ) = dim(rangeT ).

2Alternate proof of 2b by TC (sketch): By the Fundamental Theorem of linear maps in previous footnote,

dim(rangeST ) = dim(rangeT ) ⇐⇒ nullST = nullT.

This means ST (v) = 0 ⇐⇒ T (v) = 0. Therefore T (v) 6= 0 =⇒ ST (v) 6= 0 (contrapositive of forwards

implication). This means that if w ∈ rangeT is nonzero, S(w) 6= 0; in other words, rangeT ∩ kerS = {0}. By Prop.
1.45, this is the condition to have a direct sum:

rangeT + kerS = rangeT ⊕ kerS
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But this last condition holds if and only if nullS ⊂ rangeT , as claimed. [This is a general fact
about sets: for any sets X and Y it’s true that X ∩ Y = Y ⇐⇒ Y ⊂ X. The proof is
quite straightforward. -TC] �


