Math 113 Homework 2 Solutions

Solutions by Guanyang Wang, with edits by Tom Church.
Exercises from the book.
Exercise 2.A. 11 Suppose v_{1}, \ldots, v_{m} is linearly independent in V and $w \in V$. Show that v_{1}, \ldots, v_{m}, w is linearly independent if and only if

$$
w \notin \operatorname{span}\left(v_{1}, \ldots, v_{m}\right)
$$

Proof. First suppose v_{1}, \ldots, v_{m}, w is linearly independent. Then if $w \in \operatorname{span}\left(v_{1}, \ldots, v_{m}\right)$, we can write w as the linear combination of v_{1}, \ldots, v_{m}, that is $w=a_{1} v_{1}+\ldots+a_{m} v_{m}$. Adding both sides of the equation by $-w$, we have

$$
a_{1} v_{1}+\ldots+a_{m} v_{m}+(-w)=0
$$

Therefore we can write 0 as $a_{1} v_{1}+\ldots+a_{m} v_{m}+(-w)$, so there exists $a_{1}, a_{2}, \ldots, a_{m},-1$, not all 0 , such that $a_{1} v_{1}+\ldots+a_{m} v_{m}+(-w)=0$. by the definition of linear dependence, we have $v_{1}, \ldots v_{m}, w$ is linearly dependent, which contradicts our initial assumption. Thus we have $w \notin \operatorname{span}\left(v_{1}, \ldots, v_{m}\right)$.

Conversely, suppose $w \notin \operatorname{span}\left(v_{1}, \ldots, v_{m}\right)$. If v_{1}, \ldots, v_{m}, w is linearly dependent, then by the linear dependence lemma(Lemma 2.21), we have $v_{j} \in \operatorname{span}\left(v_{1}, \ldots, v_{j-1}\right)$ for some j or $w \in \operatorname{span}\left(v_{1}, \ldots, v_{m}\right)$. But since v_{1}, \ldots, v_{m} is linearly independent, there is no $j \in\{1, \ldots, m\}$ such that $v_{j} \in \operatorname{span}\left(v_{1}, \ldots, v_{j-1}\right)$. Meanwhile we have $w \notin$ $\operatorname{span}\left(v_{1}, \ldots, v_{m}\right)$ by our assumption. Therefore v_{1}, \ldots, v_{m}, w is linearly independent.

Exercise 2.B.5 Prove or disprove: there exists a basis $p_{0}, p_{1}, p_{2}, p_{3}$ of $P_{3}(\mathbb{F})$ such that none of the polynomials $p_{0}, p_{1}, p_{2}, p_{3}$ has degree 2 .

Proof. We will show that

$$
\begin{aligned}
& p_{0}=1 \\
& p_{1}=x \\
& p_{2}=x^{3}+x^{2} \\
& p_{3}=x^{3}
\end{aligned}
$$

is a basis for $P_{3}(\mathbb{F})$. Note that none of these polynomials has degree 2 .
Proposition 2.42 in the book states that if V is a finite dimensional vector space, and we have a spanning list of vectors of length $\operatorname{dim} V$, then that list is a basis. It is shown in the book that $P_{3}(\mathbb{F})$ has dimension 4 . Since this list has 4 vectors, we only need to show that it spans $P_{3}(\mathbb{F})$.

Suppose $p(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3} \in P_{3}(\mathbb{F})$. We need to find b_{0}, \ldots, b_{3} s.t. $p(x)=b_{0} p_{0}+\cdots+b_{3} p_{3}$. Note that $p_{2}-p_{3}=x^{2}$. So let $b_{0}=a_{0}, b_{1}=a_{1}, b_{2}=a_{2}$ and $b_{3}=a_{3}-a_{2}$. Then,

$$
\begin{aligned}
b_{0} p_{0}+b_{1} p_{1}+b_{2} p_{2}+b_{3} p_{3} & =a_{0}+a_{1} x+a_{2}\left(x^{2}+x^{3}\right)+\left(a_{3}-a_{2}\right) x^{3} \\
& =a_{0}+a_{1} x+a_{2} x^{2}+a_{2} x^{3}+a_{3} x^{3}-a_{2} x^{3} \\
& =a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3} \\
& =p(x)
\end{aligned}
$$

So we can can write $p(x)$ as a linear combination of p_{0}, p_{1}, p_{2} and p_{3}. Thus p_{0}, p_{1}, p_{2} and p_{3} span $P_{3}(\mathbb{F})$. Thus, they form a basis for $P_{3}(\mathbb{F})$. Therefore, there exists a basis of $P_{3}(\mathbb{F})$ with no polynomial of degree 2 .

Exercise 2.B.7 Prove or give a counterexample: If $v_{1}, v_{2}, v_{3}, v_{4}$ is a basis of V and U is a subspace of V such that $v_{1}, v_{2} \in U$ and $v_{3} \notin U$ and $v_{4} \notin U$, then v_{1}, v_{2} is a basis of U .

Proof. The statement above is false. Take $V=\mathbb{R}^{4}$, let $v_{1}=(1,0,0,0), v_{2}=$ $(0,1,0,0), v_{3}=(0,0,1,0), v_{4}=(0,0,0,1)$, it is the standard basis of \mathbb{R}^{4} (see example 2.28 (a)). Let

$$
U=\{(a, b, c, c): a, b, c \in R\}
$$

We have $v_{1} \in U, v_{2} \in U, v_{3} \notin U, v_{4} \notin U$. Now we will prove v_{1}, v_{2} does not $\operatorname{span} \mathrm{U}$. For any $w \in \operatorname{span}\left(v_{1}, v_{2}\right), w=a_{1} v_{1}+a_{2} v_{2}=a_{1}(1,0,0,0)+a_{2}(0,1,0,0)=$ $\left(a_{1}, a_{2}, 0,0\right)$. Let $u=(0,0,1,1)$, we have $u \in U$ but $u \notin \operatorname{span}\left(v_{1}, v_{2}\right)$.

By definition of basis, we have v_{1}, v_{2} is not a basis of U .

Exercise 2.C.1 Suppose that V is finite dimensional and U is a subspace of V such that $\operatorname{dim} U=\operatorname{dim} V$. Prove that $U=V$.

Proof. Suppose $\operatorname{dim} U=\operatorname{dim} V=n$. Then we can find a basis u_{1}, \ldots, u_{n} for U.
Since u_{1}, \ldots, u_{n} is a basis of U, it is a linearly independent set. Proposition 2.39 says that if V is finite dimensional, then every linearly independent list of vectors in V of length $\operatorname{dim} V$ is a basis for V. The list u_{1}, \ldots, u_{n} is a list of n linearly independent vectors in V (because it forms a basis for U, and because $U \subset V$.) Since $\operatorname{dim} V=n, u_{1}, \ldots, u_{n}$ is a basis of V.

This means that u_{1}, \ldots, u_{n} spans V. Thus, we can express any $v \in V$ as a linear combination of u_{1}, \ldots, u_{n}. But each u_{i} is an element of U. Since U is a vector space, any linear combination of elements of U is also in U. Thus any $v \in V$ is also an element of U. Therefore $V \subset U$.

We have $U \subset V$ since U is a subspace of V, and we have just shown that $V \subset U$. Therefore, $U=V$.

Exercise 2.C. 7 (a) Let $U=\left\{p \in P_{4}(\mathbb{F}): p(2)=p(5)=p(6)\right\}$. Find a basis of U.
(b) Extend the basis in part (a) to a basis of $P_{4}(\mathbb{F})$.
(c) Find a subspace W of $P_{4}(\mathbb{F})$ such that $P_{4}(\mathbb{F})=U \oplus W$.

Proof. (a) A basis of U is

$$
1,(x-2)(x-5)(x-6),(x-2)^{2}(x-5)(x-6)
$$

Each polynomial in the list above is in U. To verify that the list above is indeed a basis of U, first note that the list above is linearly independent. Suppose $a, b, c \in \mathbb{R}$ and

$$
a+b(x-2)(x-5)(x-6)+c(x-2)^{2}(x-5)(x-6)=0
$$

for every $x \in R$. Without explicitly expanding the left side of the equation above, we can see that the left side has a $c x^{4}$ term. Because the right side has no x^{4} term, this implies that $c=0$. Because $c=0$, we see that the left side has a $b x^{3}$ term, which implies that $b=0$. Because $b=c=0$, the equation becomes $a=0$.

Therefore the equation above implies $a=b=c=0$. Hence the list $1,(x-2)(x-$ $5)(x-6),(x-2)^{2}(x-5)(x-6)$ is linearly independent in U. Now we are going to prove $\operatorname{dim} U=3$, then Proposition 2.39 implies that $1,(x-2)(x-5)(x-6),(x-$ $2)^{2}(x-5)(x-6)$ is a basis of U. Since we already know $1,(x-2)(x-5)(x-6),(x-$ $2)^{2}(x-5)(x-6)$ is linearly independent in U, we have $\operatorname{dim} U \geq 3$, thus we just need to prove $\operatorname{dim} U \leq 3$.

Define $V=\left\{p \in P_{4}(\mathbb{F}): p(2)=p(5)\right\}$. We know that V is a proper subspace of $P_{4}(\mathbb{F})$, since e.g. $f(x)=x$ is a polynomial in $P_{4}(\mathbb{F})$ that is not in $V($ since $f(2)=2$ while $f(5)=5$). We already know $\operatorname{dim}\left(P_{4}(\mathbb{F})\right)=5$ from Example 2.37. Using the result in Exercise 2.C.1, we know that $\operatorname{dim} V<\operatorname{dim} P_{4}(\mathbb{F})$ since V is a proper subspace of $P_{4}(\mathbb{F})$, so $\operatorname{dim} V \leq 4$. Similarly, we know U is a proper subspace of V, because e.g. $q(x)=(x-2)(x-5)$ is a polynomial that is in V but not in U (since $q(5)=0$ while $q(6)=4$). Applying Exercise 2.C.1 again, we conclude that $\operatorname{dim} U<\operatorname{dim} V$, so $\operatorname{dim} U \leq 3$.

We conclude that $\operatorname{dim} U=3$. By Prop. 2.39, we can conclude that $1,(x-2)(x-$ $5)(x-6),(x-2)^{2}(x-5)(x-6)$ is a basis of U.
(b)The list

$$
1,(x-2)(x-5)(x-6),(x-2)^{2}(x-5)(x-6), x, x^{2}
$$

is a basis of $P_{4}(\mathbb{F})$.
First we prove that $1,(x-2)(x-5)(x-6),(x-2)^{2}(x-5)(x-6), x, x^{2}$ is linear independent.

Suppose $a, b, c, d, e \in \mathbb{R}$ and

$$
a+b(x-2)(x-5)(x-6)+c(x-2)^{2}(x-5)(x-6)+d x+e x^{2}=0
$$

Without explicitly expanding the left side of the equation above, we can see that the left side has a $c x^{4}$ term. Because the right side has no x^{4} term, this implies that $c=0$. Because $c=0$, we see that the left side has a $b x^{3}$ term, which implies that $b=0$. Because $b=c=0$, the left side has a $e x^{2}$ term which implies that $b=0$. Because $b=c=e=0$, the left side has a $d x$ term which implies that $d=0$. Because $b=c=d=e=0$, the equation above becomes $a=0$.

Therefore the equation above implies $a=b=c=d=e=0$. Hence the list $1,(x-2)(x-5)(x-6),(x-2)^{2}(x-5)(x-6), x, x^{2}$ is linearly independent in $P_{4}(\mathbb{F})$.

Notice that this linearly independent list has length 5 , meanwhile $\operatorname{dim} P_{4}(\mathbb{F})=5$ (see Example 2.37). Using Proposition 2.39 , we can conclude that $1,(x-2)(x-$ $5)(x-6),(x-2)^{2}(x-5)(x-6), x, x^{2}$ is a basis of $P_{4}(\mathbb{F})$.
(c) Denote the subspace $\operatorname{span}\left(x, x^{2}\right)$ by W. Since

$$
1,(x-2)(x-5)(x-6),(x-2)^{2}(x-5)(x-6), x, x^{2}
$$

forms a basis of $P_{4}(\mathbb{F})$, we know that x, x^{2} is linearly independent, thus x, x^{2} is a basis of W (see Definition 2.27) and we have $\operatorname{dim} W=2$ (see Definition 2.36). From (a) we know that $1,(x-2)(x-5)(x-6),(x-2)^{2}(x-5)(x-6)$ is a basis of U, and $\operatorname{dim} U=3$. Now we want to prove $P_{4}(\mathbb{F})=U \oplus W$.

First we prove that U and W is a direct sum. Suppose $f \in U \cap W$, then we can write f as

$$
f=a_{1}+a_{2}(x-2)(x-5)(x-6)+a_{3}(x-2)^{2}(x-5)(x-6)(\text { since } f \in U)
$$

and

$$
f=a_{4} x+a_{5} x^{2}(\text { since } f \in W)
$$

Combining the two equalities together we have

$$
a_{1}+a_{2}(x-2)(x-5)(x-6)+a_{3}(x-2)^{2}(x-5)(x-6)=a_{4} x+a_{5} x^{2}
$$

Adding both sides of the equality by $-\left(a_{4} x+a_{5} x^{2}\right)$ and using the property of additive inverse, we have

$$
\begin{aligned}
& a_{1}+a_{2}(x-2)(x-5)(x-6)+a_{3}(x-2)^{2}(x-5)(x-6)+\left(-\left(a_{4} x+a_{5} x^{2}\right)\right) \\
= & a_{4} x+a_{5} x^{2}+\left(-\left(a_{4} x+a_{5} x^{2}\right)\right) \\
= & 0
\end{aligned}
$$

So we have

$$
a_{1}+a_{2}(x-2)(x-5)(x-6)+a_{3}(x-2)^{2}(x-5)(x-6)+\left(-a_{4}\right) x+\left(-a_{5}\right) x^{2}=0
$$

Since $1,(x-2)(x-5)(x-6),(x-2)^{2}(x-5)(x-6), x, x^{2}$ is linearly independent, using Definition 2.17 we have:

$$
a_{1}=a_{2}=a_{3}=-a_{4}=-a_{5}=0
$$

Which is equivalent to

$$
a_{1}=a_{2}=a_{3}=a_{4}=a_{5}=0
$$

So we have $f=0 x^{2}+0 x=0$, thus U and W is a direct sum (see Proposition 1.45).
Then we prove $U \oplus W=P_{4}(\mathbb{F})$. Using Theorem 2.43 , we have

$$
\operatorname{dim}(U+W)=\operatorname{dim} U+\operatorname{dim} W-\operatorname{dim}(U \cap W)
$$

Consider the right side of the equation. Since $\operatorname{dim} U=3, \operatorname{dim} W=2, \operatorname{dim}(U \cap$ $W)=0$. We have $\operatorname{dim}(U+W)=5$. The vector space $U+W$ is a subspace of $P_{4}(\mathbb{F})$, so using the result in Exercise 2.C.1, we have $U+W=P_{4}(\mathbb{F})$. We have proved that U and W is a direct sum, therefore we have $U \oplus W=P_{4}(\mathbb{F})$.

Exercise 2.C.11 Suppose that U and W are subspaces of \mathbb{R}^{8} such that $\operatorname{dim} U=$ 3, $\operatorname{dim} W=5$, and $U+W=\mathbb{R}^{8}$. Prove that $\mathbb{R}^{8}=U \oplus W$.

Proof. We know from Theorem 2.43 that

$$
\operatorname{dim}(U+W)=\operatorname{dim} U+\operatorname{dim} W-\operatorname{dim}(U \cap W)
$$

First consider the left hand side of the equation. Here we have $U+W=\mathbb{R}^{8}$, so $\operatorname{dim}(U+W)=\operatorname{dim}\left(\mathbb{R}^{8}\right)=8$.

Now consider the right hand side of the equation. Since $\operatorname{dim} U=3, \operatorname{dim} W=5$, the right hand of the equation equals to $8-\operatorname{dim}(U \cap W)$.

Therefore we have $8-\operatorname{dim}(U \cap W)=8$, so $\operatorname{dim}(U \cap W)=0$, which implies $U \cap W=\{0\}$, so we have $\mathbb{R}^{8}=U \oplus W$ (see Proposition 1.45 from our textbook).

Exercise 2.C. 12 Suppose U and W are both five-dimensional subspaces of \mathbb{R}^{9}. Prove that $U \cap W \neq\{0\}$.
Proof. Suppose that $U \cap W=\{0\}$. By Theorem 2.43,

$$
\operatorname{dim}(U+W)=\operatorname{dim} U+\operatorname{dim} W-\operatorname{dim}(U \cap W)
$$

First consider the right hand side of this equation. Since $U \cap W=\{0\}$, the dimension of $U \cap W$ is zero. Since $\operatorname{dim} U=\operatorname{dim} V=5$, the right hand side of this equation is 10 .

Now consider the left hand side of the equation. The vector space $U+W$ is a subspace of \mathbb{R}^{9}. By Proposition 2.38 in the book, the dimension of a subspace of \mathbb{R}^{9} is at most the dimension of \mathbb{R}^{9}. Since $\operatorname{dim}\left(\mathbb{R}^{9}\right)=9$, we have $\operatorname{dim}(U+W) \leq 9$. But this is impossible since the right hand side of the equality is 10 .

Therefore, $U \cap W \neq\{0\}$.

Exercise 3.A. 11 Suppose V is finite-dimensional. Prove that every linear map on a subspace of V can be extended to a linear map on V. In other words, show that if U is a subspace of V and $S \in \mathcal{L}(U, W)$, then there exists $T \in \mathcal{L}(V, W)$ such that $T u=S u$ for all $u \in U$.

Proof. Suppose U is a subspace of V and $S \in \mathcal{L}(U, W)$. Choose a basis u_{1}, \ldots, u_{m} of U. Then u_{1}, \ldots, u_{m} is a linearly independent list of vectors in V , and so can be extended to a basis $u_{1}, \ldots, u_{m}, v_{1}, \ldots, v_{n}$ of V (by Proposition 2.33). Using Proposition 3.5, we know that there exists a unique linear map $T \in \mathcal{L}(V, W)$ such that

$$
\begin{gathered}
T u_{i}=S u_{i} \text { for all } i \in\{1,2, \ldots, m\} \\
T v_{j}=0 \text { for all } j \in\{1,2, \ldots n\}
\end{gathered}
$$

Now we are going to prove $T u=S u$ for all $u \in U$.
For any $u \in U, u$ can be written as $a_{1} u_{1}+\ldots+a_{m} u_{m}$, since $S \in \mathcal{L}(U, W)$, $S u=a_{1} S u_{1}+a_{2} S u_{2}+\ldots+a_{m} S u_{m}$ (see Definition 3.2).

Since $T \in \mathcal{L}(V, W)$, we have

$$
\begin{aligned}
T u & =T\left(a_{1} u_{1}+\ldots+a_{m} u_{m}\right) \\
& =a_{1} T u_{1}+a_{2} T u_{2}+\ldots+a_{m} T u_{m} \\
& =a_{1} S u_{1}+a_{2} S u_{2}+\ldots+a_{m} S u_{m} \\
& =S u
\end{aligned}
$$

Therefore we have $T u=S u$ for all $u \in U$, so we have proved that every linear map on a subspace of V can be extended to a linear map on V.

Exercise 3.A. 14 Suppose V is finite-dimensional with $\operatorname{dim} V \geq 2$. Prove that there exist $S, T \in \mathcal{L}(V, V)$ such that $S T \neq T S$.

Proof. Let v_{1}, \ldots, v_{n} be a basis of V. We can use Proposition 3.5 to define $S, T \in$ $\mathcal{L}(V, V)$ such that

$$
S v_{k}= \begin{cases}v_{2} & \text { if } k=1 \\ 0 & \text { if } k \neq 1\end{cases}
$$

and

$$
T v_{k}= \begin{cases}v_{1} & \text { if } k=2 \\ 0 & \text { if } k \neq 2\end{cases}
$$

Then

$$
(S T)\left(v_{1}\right)=S\left(T v_{1}\right)=S 0=0
$$

but

$$
(T S)\left(v_{1}\right)=T\left(S v_{1}\right)=T v_{2}=v_{1} \neq 0
$$

Thus $S T \neq T S$.

Question 1. If V is a vector space over the field \mathbb{F}, consider its dual vector space V^{*}. Assume that $\operatorname{dim} V=n$, and that v_{1}, \ldots, v_{n} is a basis for V. Find a basis V^{*}. What is $\operatorname{dim} V^{*}$?

Proof. Let v_{1}, \ldots, v_{n} be a basis for V. Let $v \in V$. Then we can write v as a linear combination of the basis vectors. That is, $v=a_{1} v_{1}+\cdots+a_{n} v_{n}$ for some $a_{1}, \ldots, a_{n} \in \mathbb{F}$. Let $f_{i}: V \rightarrow \mathbb{F}$ be the map such that $f_{i}(v)=a_{i}$. We will show that f_{1}, \ldots, f_{n} is a basis for V^{*}.

First, we should show that $f_{i} \in V^{*}$ for all i. Suppose $v, w \in V$. Write $v=$ $a_{1} v_{1}+\cdots+a_{n} v_{n}$ and $w=b_{1} v_{1}+\cdots+b_{n} v_{n}$. Thus $f_{i}(v)=a_{i}$ and $f_{i}(w)=b_{i}$. We have $v+w=\left(a_{1}+b_{1}\right) v_{1}+\ldots\left(a_{n}+b_{n}\right) v_{n}$. So, $f_{i}(v+w)=a_{i}+b_{i}$. This is the same as $f_{i}(v)+f_{i}(w)$. Thus $f_{i}(v+w)=f_{i}(v)+f_{i}(w)$. Next, if $c \in \mathbb{F}$, then $c v=c a_{1} v_{1}+\cdots+c a_{n} v_{n}$. So, $f_{i}(c v)=c a_{i}$, which is the same as $c f_{i}(v)$. Thus $f_{i}(c v)=c f_{i}(v)$. Therefore, $f_{i} \in V^{*}$ for all i.

Next, we need to show that f_{1}, \ldots, f_{n} span V^{*}. Let $f \in V^{*}$. We will show that if $c_{i}=f\left(v_{i}\right)$, (where v_{1}, \ldots, v_{n} is our basis for V), then $f=c_{1} f_{1}+\cdots+c_{n} f_{n}$.

Let $v=a_{1} v_{1}+\cdots+a_{n} v_{n} \in V$. Then

$$
\begin{aligned}
f(v) & =a_{1} f\left(v_{1}\right)+\ldots a_{n} f\left(v_{n}\right) \text { because } f \in V^{*} \\
& =a_{1} c_{1}+\cdots+a_{n} c_{n} \text { since we defined } c_{i}=f\left(v_{i}\right) \\
& =c_{1} f_{1}(v)+\cdots+c_{n} f_{n}(v) \text { because } f_{i}(v)=a_{i}, \text { by definition }
\end{aligned}
$$

Thus $f(v)=\left(c_{1} f_{1}+\ldots c_{n} f_{n}\right)(v)$ for all $v \in V$, so $f=c_{1} f_{1}+\ldots c_{n} f_{n}$. This shows that any element f of V^{*} can be written as a linear combination of f_{1}, \ldots, f_{n}.

Lastly, we need to show that f_{1}, \ldots, f_{n} are linearly independent. Suppose that we can find constants c_{1}, \ldots, c_{n} s.t. $c_{1} f_{1}+\cdots+c_{n} f_{n}=0$. Then for any element $v \in V, c_{1} f_{1}(v)+\cdots+c_{n} f_{n}(v)=0$. In particular, for any i,

$$
\begin{aligned}
c_{1} f_{1}\left(v_{i}\right)+\cdots+c_{n} f_{n}\left(v_{i}\right) & =0 \text { but } f_{j}\left(v_{i}\right)=0 \text { for all } j \neq i \text { so } \\
c_{i} f_{i}\left(v_{i}\right) & =0 \text { and since } f_{i}\left(v_{i}\right)=1 . \\
c_{i} & =0
\end{aligned}
$$

Therefore $c_{i}=0$ for all i. Thus the f_{i} are linearly independent.
This means f_{1}, \ldots, f_{n} form a basis for V^{*}. Since there are n elements of this basis, the dimension of V^{*} is n.

Question 2. Let V be a vector space with basis v_{1}, v_{2}, and let W be a vector space with basis w_{1}, w_{2}, w_{3}. Find a basis for $\mathcal{L}(V, W)$. What is $\operatorname{dim} \mathcal{L}(V, W) ?$

Proof. Let $v \in V$. Then we can write $v=a_{1} v_{1}+a_{2} v_{2}$. Define $f_{i j}: V \rightarrow W$ for $i \in\{1,2\}$ and $j \in\{1,2,3\}$ to be

$$
f_{i j}(v)=a_{i} w_{j}
$$

For example, $f_{12}(v)=a_{1} w_{2}$, and so on.
We claim that $f_{11}, f_{12}, f_{13}, f_{21}, f_{22}, f_{23}$ form a basis for $\mathcal{L}(V, W)$. First we need to show that $f_{i j}$ is linear for any i, j. Suppose $v, w \in V$. Write $v=a_{1} v_{1}+a_{2} v_{2}$ and $w=b_{1} v_{1}+b_{2} v_{2}$. Thus $f_{i j}(v)=a_{i} w_{j}$ and $f_{i j}(w)=b_{i} w_{j}$. We have $v+w=$ $\left(a_{1}+b_{1}\right) v_{1}+\left(a_{2}+b_{2}\right) v_{2}$. So, $f_{i j}(v+w)=\left(a_{i}+b_{i}\right) w_{j}$. This is the same as $f_{i j}(v)+$ $f_{i j}(w)$. Thus $f_{i j}(v+w)=f_{i j}(v)+f_{i j}(w)$. If $c \in \mathbb{F}$, then $c v=c a_{1} v_{1}+c a_{2} v_{2}$. So, $f_{i j}(c v)=c a_{i} w_{j}$, which is the same as $c f_{i j}(v)$. Thus $f_{i j}(c w)=c f_{i j}(w)$. Therefore, $f_{i j} \in \mathcal{L}(V, W)$ for all i, j.

Next, we need to show that $f_{11}, f_{12}, f_{13}, f_{21}, f_{22}, f_{23}$ span $\mathcal{L}(V, W)$. Let $f \in$ $\mathcal{L}(V, W)$. For each $i, f\left(v_{i}\right)$ is an element of W. That means we can express it as a linear combination of w_{1}, w_{2} and w_{3}. For each $i \in\{1,2\}$ we define elements $c_{i 1}, c_{i 2}, c_{i 3} \in \mathbb{F}$ s.t. $f\left(v_{i}\right)=c_{i 1} w_{1}+c_{i 2} w_{2}+c_{i 3} w_{3}$ (where v_{1}, v_{2} is our basis for V.) We claim that

$$
f=c_{11} f_{11}+c_{12} f_{12}+c_{13} f_{13}+c_{21} f_{21}+c_{22} f_{22}+c_{23} f_{23}
$$

Let $v=a_{1} v_{1}+a_{2} v_{2} \in V$. Then

$$
f(v)=a_{1} f\left(v_{1}\right)+a_{2} f\left(v_{2}\right)
$$

because f is linear

$$
=a_{1}\left(c_{11} w_{1}+c_{12} w_{2}+c_{13} w_{3}\right)+a_{2}\left(c_{21} w_{1}+c_{22} w_{2}+c_{23} w_{3}\right)
$$

by the definition of $c_{i j}$ for each i, j

$$
=c_{11} f_{11}(v)+c_{12} f_{12}(v)+c_{13} f_{13}(v)+c_{21} f_{21}(v)+c_{22} f_{22}(v)+c_{23} f_{23}(v)
$$

because $f_{i j}(v)=a_{i} w_{j}$, by definition

Thus any element of $\mathcal{L}(V, W)$ can be written as a linear combination of $f_{11}, f_{12}, f_{13}, f_{21}, f_{22}$ and f_{23}.

Lastly, we need to show that $f_{11}, f_{12}, f_{13}, f_{21}, f_{22}$ and f_{23} are linearly independent. Suppose that we can find constants $c_{11}, c_{12}, c_{13}, c_{21}, c_{22}$ and c_{23} s.t.

$$
c_{11} f_{11}+c_{12} f_{12}+c_{13} f_{13}+c_{21} f_{21}+c_{22} f_{22}+c_{23} f_{23}=0
$$

Then for any element $v \in V$,

$$
c_{11} f_{11}(v)+c_{12} f_{12}(v)+c_{13} f_{13}(v)+c_{21} f_{21}(v)+c_{22} f_{22}(v)+c_{23} f_{23}(v)=0
$$

In particular, for any i,

$$
c_{11} f_{11}\left(v_{i}\right)+c_{12} f_{12}\left(v_{i}\right)+c_{13} f_{13}\left(v_{i}\right)+c_{21} f_{21}\left(v_{i}\right)+c_{22} f_{22}\left(v_{i}\right)+c_{23} f_{23}\left(v_{i}\right)=0
$$

but $f_{k j}\left(v_{i}\right)=0$ for all $k \neq i$ so

$$
c_{i 1} f_{i 1}\left(v_{i}\right)+c_{i 2} f_{i 2}\left(v_{i}\right)+c_{i 3} f_{i 3}\left(v_{i}\right)=0
$$

and since $f_{i j}\left(v_{i}\right)=w_{j}$,

$$
c_{i 1} w_{1}+c_{i 2} w_{2}+c_{i 3} w_{3}=0
$$

but w_{1}, w_{2} form a basis for W, so this is only possible if

$$
c_{i 1}=c_{i 2}=c_{i 3}=0
$$

Therefore $c_{i j}=0$ for all i, j. Thus the $f_{i j}$ are linearly independent.
This means $f_{11}, f_{12}, f_{13}, f_{21}, f_{22}$ and f_{23} form a basis for $\mathcal{L}(V, W)$. Since there are 6 elements of this basis, the dimension of $\mathcal{L}(V, W)$ is 6 .

Question 3. Let U be a subset of \mathbb{R}^{∞} consisting of all sequences that satisfy

$$
v_{i}+v_{i+2}=v_{i+1} \text { for all } i
$$

(1) Prove that U is a subspace of \mathbb{R}^{∞}.
(2) Let $x, y \in U$ be the elements

$$
\begin{aligned}
& x=(0,1,1,0,-1,-1,0,1,1, \ldots) \\
& y=(1,0,-1,-1,0,1,1,0,-1, \ldots)
\end{aligned}
$$

Prove that the list x, y is a linearly independent set
(3) Prove that x, y is a basis for U.
(4) Let W be the subspace of \mathbb{R}^{∞} consisting of all sequences with $v_{1}=0$ and $v_{2}=0$. Prove that $\mathbb{R}^{\infty}=U \oplus W$.

Proof. (1) First we prove that U is a subspace of \mathbb{R}^{∞}. To do this, we show that it has the following properties.

Zero: The sequence $(0,0, \ldots)$ satisfies $v_{i}+v_{i+2}=v_{i+1}$ because $v_{i}=$ $v_{i+1}=v_{i+2}=0$. Therefore $0 \in U$.
Closed Under Vector Addition: Suppose $v=\left(v_{1}, v_{2}, \ldots\right), w=\left(w_{1}, w_{2}, \ldots\right) \in$ U. Then $v_{i}+v_{i+2}=v_{i+1}$ and $w_{i}+w_{i+2}=w_{i+1}$. Thus $\left(v_{i}+w_{i}\right)+$ $\left(v_{i+2}+w_{i+2}\right)=\left(v_{i+1}+w_{i+1}\right)$. Since the $i^{\text {th }}$ term of $v+w$ is $v_{i}+w_{i}$ for each i, this means that $v+w \in U$. Therefore U is closed under vector addition.
Closed Under Scalar Multiplication: Suppose $v=\left(v_{1}, v_{2}, \ldots\right) \in U$ and $a \in \mathbb{R}$. Since $v_{i}+v_{i+2}=v_{i+1}$, we have that $a v_{i}+a v_{i+2}=a v_{i+1}$. Since the $i^{t h}$ term of $a v$ is $a v_{i}$ for each i, this means that $a v \in U$. Therefore U is closed under scalar multiplication.
Since U satisfies these properties, it is a subspace of \mathbb{R}^{∞}.
(2) Let $x, y \in U$ be the elements

$$
\begin{aligned}
& x=(0,1,1,0,-1,-1,0,1,1, \ldots) \\
& y=(1,0,-1,-1,0,1,1,0,-1, \ldots)
\end{aligned}
$$

We will show that (x, y) is a linearly independent set.
Suppose not. Then we can find $a, b \in \mathbb{R}$ s.t. $a x+b y=0$. Note that

$$
\begin{aligned}
a x & =(0, a, a, 0,-a,-a, 0, a, a, \ldots) \\
b y & =(b, 0,-b,-b, 0, b, b, 0,-b, \ldots) \text { so, } \\
a x+b y & =(b, a, \ldots)
\end{aligned}
$$

If $a x+b y=0$ then $b=0$ and $a=0$ since two sequences are equal iff their terms are all equal. This means that x and y are linearly independent.
(3) Next we show that (x, y) is a basis for U. Since we have already shown that (x, y) is a linearly independent set, we just need to show that it spans U.

Let $u \in U$. Write $u=\left(u_{1}, u_{2}, \ldots\right)$. Then we claim that $u=u_{1} y+u_{2} x$. Note that
$u_{1} y+u_{2} x=\left(u_{1}, u_{2}, u_{2}-u_{1},-u_{1},-u_{2},-u_{2}+u_{1}, u_{1}, u_{2}, u_{2}-u_{1}, \ldots\right)$
We will show that all the terms of u and $u_{1} y+u_{2} x$ match up by induction. We will use the fact that since $u_{i}+u_{i+2}=u_{i+1}$, then $u_{i+2}=u_{i+1}-u_{i}$. First of all, this means that $u_{3}=u_{2}-u_{1}$. Thus, u and $u_{1} y+u_{2} x$ match up on the first three terms.

Now suppose the first $3 n$ terms of u and $u_{1} y+u_{2} x$ are the same. We need to show that this implies the first $3(n+1)$ terms are the same. There are two cases: n is either odd or even. First suppose n is odd. Then

$$
u=\left(u_{1}, \ldots,-u_{2}+u_{1}, u_{1}, u_{2}, u_{2}-u_{1}, u_{3 n+1}, u_{3 n+2}, u_{3 n+3}, \ldots\right)
$$

where the $u_{2}-u_{1}$ is its $3 n^{\text {th }}$ term. Since $u_{3 n+1}=u_{3 n}-u_{3 n-1}$, we have that $u_{3 n+1}=-u_{1}$. Next, since $u_{3 n+2}=u_{3 n+1}-u_{3 n}$, we have that $u_{3 n+2}=-u_{2}$. Lastly, since $u_{3 n+3}=u_{3 n+2}-u_{3 n+1}$, we have that $u_{3 n+3}=-u_{2}+u_{1}$. Thus u and $u_{1} y+u_{2} x$ match up for $3 n+3=3(n+1)$ terms.

Now suppose that n is even. Then,
$u=\left(u_{1}, \ldots, u_{2}-u_{1},-u_{1},-u_{2},-u_{2}+u_{1}, u_{3 n+1}, u_{3 n+2}, u_{3 n+3}, \ldots\right)$
where the $u_{2}-u_{1}$ is its $3 n^{t h}$ term. Since $u_{3 n+1}=u_{3 n}-u_{3 n-1}$, we have that $u_{3 n+1}=u_{1}$. Next, since $u_{3 n+2}=u_{3 n+1}-u_{3 n}$, we have that $u_{3 n+2}=u_{2}$. Lastly, since $u_{3 n+3}=u_{3 n+2}-u_{3 n+1}$, we have that $u_{3 n+3}=u_{2}-u_{1}$. Thus u and $u_{1} y+u_{2} x$ match up for $3 n+3=3(n+1)$ terms.

Therefore, by induction, $u_{1} y+u_{2} x=u$.
This means that x and y span U. Since we have shown that they are linearly independent, they form a basis for U.
(4) Let W be the subspace of \mathbb{R}^{∞} consisting of all sequences with $v_{1}=0$ and $v_{2}=0$. We need to show that $\mathbb{R}^{\infty}=U \oplus W$. By Proposition 1.9 from the book, $\mathbb{R}^{\infty}=U \oplus W$ iff $\mathbb{R}^{\infty}=U+W$ and $U \cap W=\{0\}$.

To show that $\mathbb{R}^{\infty}=U+W$ we need to show that any sequence can be written as the sum of an element of U and an element of W. Let $x=$ $\left(x_{1}, x_{2}, \ldots\right) \in \mathbb{R}^{\infty}$. Let $u=\left(x_{1}, x_{2}, x_{2}-x_{1},-x_{1},-x_{2}, x_{1}-x_{2}, x_{1}, x_{2}, \ldots\right)$ be the element of U that starts with x_{1} and x_{2}. Let $w=x-u$. Since u and x have the same first and second term, $w=\left(0,0, w_{3}, w_{4}, \ldots\right)$. So, $w \in W$. Since $x=u+w$, we can write any element of \mathbb{R}^{∞} as the sum of an element of U plus an element of W. Thus, $\mathbb{R}^{\infty}=U+W$.

To show that $U \cap W=\{0\}$, suppose $v \in U \cap W$. We will show that $v=0$ by induction. Write $v=\left(v_{1}, v_{2}, \ldots\right)$. Since $v \in W, v_{1}=v_{2}=0$. Suppose $v_{n-1}=v_{n}=0$. Then we need to show that $v_{n+1}=0$. Since $v_{n+1}=v_{n}-v_{n-1}$, we have that $v_{n+1}=0$. So by induction, $v=0$. Therefore, $U \cap W=\{0\}$.

Since we proved $\mathbb{R}^{\infty}=U+W$ and $U \cap W=\{0\}$, we have shown that $\mathbb{R}^{\infty}=U \oplus W$.

