Math 113: Linear Algebra and Matrix Theory
 Thomas Church (tfchurch@stanford.edu)
 http://math.stanford.edu/~church/teaching/113-F15

Homework 2

Due Wednesday, October 7 in class.
Do all the following exercises:

$$
\text { 2A. } 11
$$

2B. $5 \quad$ 2B. 7
2C. 1
2C. 7
2C. 11
2C. 12
3A. $11 \quad$ 3A. 14
Question 1. If V is a vector space over the field \mathbf{F}, the dual vector space V^{*} is the vector space $\mathcal{L}(V, \mathbf{F})$ of linear maps from V to \mathbf{F}. Explicitly, the elements of V^{*} are the functions $f: V \rightarrow \mathbf{F}$ that satisfy

$$
\begin{aligned}
f(v+w) & =f(v)+f(w) & \forall v, w \in V \\
f(a \cdot v) & =a \cdot f(v) & \forall v \in V, a \in \mathbf{F}
\end{aligned}
$$

Assume that $\operatorname{dim} V=n$, and that v_{1}, \ldots, v_{n} is a basis for V. Find a basis for V^{*}. What is $\operatorname{dim} V^{*}$? Question 2. Let V be a vector space with basis v_{1}, v_{2}, and let W be a vector space with basis w_{1}, w_{2}, w_{3}. Find a basis for $\mathcal{L}(V, W)$. What is $\operatorname{dim} \mathcal{L}(V, W)$?

Question 3. Recall that \mathbb{R}^{∞} is the vector space whose elements are infinite sequences of real numbers $v=\left(v_{1}, v_{2}, \ldots\right)$, where each v_{i} is a real number $v_{i} \in \mathbb{R}$.

Let U be the subset of \mathbb{R}^{∞} consisting of all sequences that satisfy

$$
v_{i}+v_{i+2}=v_{i+1} \quad \text { for all } i .
$$

a) Prove that U is a subspace of \mathbb{R}^{∞}.
b) Let $x, y \in U$ be the elements

$$
\begin{aligned}
x & =(0,1,1,0,-1,-1,0,1,1, \ldots) \\
y & =(1,0,-1,-1,0,1,1,0,-1, \ldots)
\end{aligned}
$$

Prove that the list x, y is linearly independent.
c) Prove that x, y is a basis for U.
d) Let W be the subspace of \mathbb{R}^{∞} consisting of all sequences with $v_{1}=0$ and $v_{2}=0$. (You do not have to prove that W is a subspace.) Prove that $\mathbb{R}^{\infty}=U \oplus W$.

