Solutions by Guanyang Wang, with edits by Tom Church.
Exercise 1.A.2. Show that $\frac{-1+\sqrt{3} i}{2}$ is a cube root of 1 (meaning that its cube equals 1).

Proof. We can use the definition of complex multiplication, we have

$$
\begin{aligned}
\left(\frac{-1+\sqrt{3} i}{2}\right)^{2} & =\frac{-1+\sqrt{3} i}{2} \times \frac{-1+\sqrt{3} i}{2} \\
& =\frac{1}{4}-\frac{3}{4}+\left(-\frac{\sqrt{3}}{4}-\frac{\sqrt{3}}{4}\right) i \\
& =-\frac{1}{2}-\frac{\sqrt{3}}{2} i=\frac{-1-\sqrt{3} i}{2}
\end{aligned}
$$

Thus

$$
\begin{aligned}
\left(\frac{-1+\sqrt{3} i}{2}\right)^{3} & =\frac{-1+\sqrt{3} i}{2} \times \frac{-1-\sqrt{3} i}{2} \\
& =\left(\frac{1}{4}+\frac{3}{4}\right)+\left(\frac{\sqrt{3}}{4}-\frac{\sqrt{3}}{4}\right) i \\
& =1
\end{aligned}
$$

Exercise 1A.10. Find two distinct square roots of $i$.
Proof. We first explain how we can find the square roots (students did not have to write this part down). If $a+b i$ is a square root of $i$, this means $a$ and $b$ are real numbers such that

$$
(a+b i)^{2}=i
$$

Then

$$
\begin{aligned}
i & =(a+b i)^{2} \\
& =\left(a^{2}-b^{2}\right)+(a b+a b) i \\
& =a^{2}-b^{2}+2 a b i
\end{aligned}
$$

Since $0+1 \cdot i=\left(a^{2}-b^{2}\right)+2 a b i$, we conclude that $a^{2}=b^{2}$ and $2 a b=1$. The equation $a^{2}=b^{2}$ implies that $a=b$ or $a=-b$. However, if $a=-b$, then we would have $2 a b=-2 b^{2}=1$, which is impossible because $b$ is a real number.

So we know we must have $a=b$. The equation $2 a b=1$ now becomes $2 b^{2}=1$, which leads to $a=b= \pm \frac{\sqrt{2}}{2}$. Hence the only two possibilities for square roots of $i$ are:

$$
\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} i \text { and }-\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2} i
$$

Finally, we square each of the numbers we found, to check that they really are square roots of $i$.

$$
\begin{aligned}
\left(\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} i\right)^{2} & =\left(\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} i\right) \times\left(\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} i\right) \\
& =\frac{1}{2}-\frac{1}{2}+\left(\frac{1}{2}+\frac{1}{2}\right) i \\
& =i \\
\left(-\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2} i\right)^{2} & =\left(-\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2} i\right) \times\left(-\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2} i\right) \\
& =\frac{1}{2}-\frac{1}{2}+\left(\frac{1}{2}+\frac{1}{2}\right) i \\
& =i
\end{aligned}
$$

Thus the two numbers above are indeed square roots of $i$.
Exercise 1A.10. Find $x \in \mathbb{R}^{4}$ such that

$$
(4,-3,1,7)+2 x=(5,9,-6,8)
$$

Proof. (We first explain how to find the vector $x$; students did not need to write up this part.) Subtracting $(4,-3,1,7)$ from both sides of the equations above gives

$$
2 x=(1,12,-7,1)
$$

Multiplying both sides of the equation above by $\frac{1}{2}$ gives

$$
x=\left(\frac{1}{2}, 6,-\frac{7}{2}, \frac{1}{2}\right)^{2}
$$

We now check that this vector does indeed satisfy the desired equation.

$$
\begin{aligned}
(4,-3,1,7)+2 x & =(4,-3,1,7)+2 \cdot\left(\frac{1}{2}, 6,-\frac{7}{2}, \frac{1}{2}\right) \\
& =(4,-3,1,7)+(1,12,-7,1) \\
& =(5,9,-6,8)
\end{aligned}
$$

Therefore $x=\left(\frac{1}{2}, 6,-\frac{7}{2}, \frac{1}{2}\right)$ satisfies the original equation.
Exercise 1B.1. Prove that $-(-v)=v$ for every $v \in V$.
Proof. For any $v \in V$, by definition of additive inverse of $-v$, we have $(-v)+$ $(-(-v))=0$.

Adding $v$ on both sides of the equation gives

$$
\begin{equation*}
v+(-v)+(-(-v))=v+0 \tag{*}
\end{equation*}
$$

By definition of the additive inverse of $v$ we know that $v+(-v)=0$, so the left side of the equation $(*)$ equals $0+(-(-v))$. By commutativity, this equals $(-(-v))+0$. Finally, this equals $-(-v)$ by definition of additive identity.

Meanwhile, the right side of $(*)$ equals $v$ by definition of additive identity. Therefore, the equality $(*)$ implies $-(-v)=v$.
Exercise 1B.2. Suppose $a \in \mathbb{F}, v \in V$ and $a v=0$. Prove that $a=0$ or $v=0$.

Proof. We want to prove either $a=0$ or $v=0$. If $a=0$, then the claim is satisfied. Therefore suppose $a \neq 0$. Multiplying both sides of the assumed equation $a v=0$ by $\frac{1}{a}$, we have

$$
\frac{1}{a} a v=\frac{1}{a} 0
$$

The associative property shows that the left side of the equation above equals $1 v$, which equals $v$ by definition of multiplicative identity. The right side of the equation above equals 0 by Proposition 1.30 in the textbook. Thus $v=0$, completing the proof.

Exercise 1C.4. Suppose $b \in \mathbb{R}$. Show that the set of continuous real-valued functions $f$ on the interval $[0,1]$ such that $\int_{0}^{1} f=b$ is a subspace of $\mathbb{R}^{[0,1]}$ if and only if $b=0$.

Proof. Let

$$
U=\left\{f \in \mathbb{R}^{[0,1]}: f \text { is continuous and } \int_{0}^{1} f=b\right\}
$$

Recall that the zero element in $\mathbb{R}^{[0,1]}$ is the "zero function" $z:[0,1] \rightarrow \mathbb{R}$ defined by $z(x)=0$ for all $x \in[0,1]$.

If $U$ is a subspace of $\mathbb{R}^{[0,1]}$, then the zero element is in $U$. This means that $z$ is continuous and $\int_{0}^{1} z=b$. However we know that $\int_{0}^{1} z=\int_{0}^{1} 0=0$, so the only way that $\int_{0}^{1} z=b$ can happen is if $b=0$. (Comment from TC: this shows that when $b \neq 0$, the set $U$ violates the first property of a subspace, because it does not contain the zero element. It turns out that it also violates the second and third properties of a subspace, i.e. it is not closed under addition or multiplication. However we do not need to consider these properties; once we've shown it violates one property, it's not a subspace.)

Conversely, suppose $b=0$, so the set $U$ is

$$
U=\left\{f \in \mathbb{R}^{[0,1]}: f \text { is continuous and } \int_{0}^{1} f=0\right\}
$$

Our goal is to show that $U$ is a subspace.
First, the zero function $z$ is continuous and $\int_{0}^{1} z=\int_{0}^{1} 0=0$, so $z \in U$.
For any $c \in \mathbb{R}, f, g \in U$, we know $f+g$ and $c f$ are continuous functions (we were told this on the homework sheet). We also need the properties of integration that $\int_{0}^{1}(f+g)=\int_{0}^{1} f+\int_{0}^{1} g$ and $\int_{0}^{1}(c f)=c \int_{0}^{1} f$. (TC: this should have been on the homework sheet also.) Therefore:

$$
\begin{aligned}
\int_{0}^{1}(f+g) & =\int_{0}^{1} f+\int_{0}^{1} g \\
& =0+0 \\
& =0
\end{aligned}
$$

and

$$
\begin{aligned}
\int_{0}^{1}(c f) & =c \int_{0}^{1} f \\
& =c \cdot 0 \\
& =0
\end{aligned}
$$

Therefore $f+g \in U$ and $c f \in U$, showing that $U$ is closed under addition and scalar multiplication. We conclude that $U$ is a subspace of $\mathbb{R}^{[0,1]}$

Exercise 1.C.20. Suppose

$$
U=\left\{(x, x, y, y) \in \mathbb{F}^{4}: x, y \in \mathbb{F}\right\}
$$

Find a subspace $W$ of $\mathbb{F}^{4}$ such that $\mathbb{F}^{4}=U \oplus W$.
Proof. Let

$$
W=\left\{(a, 0, b, 0) \in \mathbb{F}^{4}: a, b \in \mathbb{F}\right\}
$$

First we check $W$ is a subspace of $\mathbb{F}^{4}$. The zero element 0 in the vector space $\mathbb{F}^{4}$ is the vector $(0,0,0,0)$, thus $0 \in W$.

For any $c \in \mathbb{F}$, any $m=\left(m_{1}, 0, m_{2}, 0\right) \in W$ and any $n=\left(n_{1}, 0, n_{2}, 0\right) \in W$, we have:

$$
m+n=\left(m_{1}+n_{1}, 0, m_{2}+n_{2}, 0\right)
$$

and

$$
c \cdot m=\left(c m_{1}, 0, c m_{2}, 0\right)
$$

Therefore $m+n \in W$ and $c \cdot m \in W$. Therefore $W$ is a subspace of $\mathbb{F}^{4}$.
Next, we check that $U \oplus W=\mathbb{F}^{4}$. First we will show that $U+W=\mathbb{F}^{4}$, then we will check that $U+W=U \oplus W$ using Prop. 1.45 (the Direct Sum Test for Two Subspaces).

1. For any $b=\left(b_{1}, b_{2}, b_{3}, b_{4}\right) \in \mathbb{F}^{4}$, let us define vectors $b_{U}=\left(b_{2}, b_{2}, b_{4}, b_{4}\right) \in U$ and $b_{W}=\left(b_{1}-b_{2}, 0, b_{3}-b_{4}, 0\right) \in W$. Adding these we see that $b=b_{U}+b_{W}$, so $b \in U+W$. This shows that every vector in $\mathbb{F}^{4}$ is in $U+W$, so $U+W=\mathbb{F}^{4}$.
2. Proposition 1.45 says that to check that $U+W=U \oplus W$, we just need to check that the intersection $U \cap W$ is $\{0\}$. So assume that $a=\left(a_{1}, a_{2}, a_{3}, a_{4}\right) \in U \cap W$ lies in both $U$ and $W$. We have $a_{1}=a_{2}, a_{3}=a_{4}$ since $a \in U$, and $a_{2}=0, a_{4}=0$ since $a \in W$. This implies

$$
a_{1}=a_{2}=a_{3}=a_{4}=0
$$

so $a=0$. This shows that $U \cap W=\{0\}$, so by Proposition 1.45 we know $U+W=U \oplus W$ is a direct sum.

Exercise 1.C.24. A function $f: \mathbb{R} \longrightarrow \mathbb{R}$ is called even if $f(-x)=f(x)$
for all $x \in \mathbb{R}$. A function $f: \mathbb{R} \longrightarrow \mathbb{R}$ is called odd if

$$
f(-x)=-f(x)
$$

for all $x \in \mathbb{R}$. Let $U_{e}$ denote the set of real-valued even functions on $\mathbb{R}$ and let $U_{o}$ denote the set of real-valued odd functions on $\mathbb{R}$. Show that $\mathbb{R}^{\mathbb{R}}=U_{e} \oplus U_{o}$.

Proof. 1. First, we check that $U_{e}$ and $U_{o}$ are subspaces of $\mathbb{R}^{\mathbb{R}}$. As above, the zero element of $\mathbb{R}^{\mathbb{R}}$ is the zero function $z: \mathbb{R} \rightarrow \mathbb{R}$ defined by $z(x)=0$ for all $x \in \mathbb{R}$.
1.1. $z \in U_{e}$ since $z(-x)=0=z(x)$ for every $x \in \mathbb{R}$. Similarly, $z \in U_{o}$ since $z(-x)=0=-0=-z(x)$ for every $x \in \mathbb{R}$.
1.2. For any $r \in \mathbb{R}, f, g \in U_{e}$, we know

$$
(r \cdot f)(-x)=r \cdot(f(-x))=r \cdot(f(x))=(r \cdot f)(x)
$$

since $f$ is even. This shows that $r \cdot f$ is even, i.e. that $r \cdot f \in U_{e}$. Similarly

$$
(f+g)(-x)=f(-x)+g(-x)=f(x)+g(x)=(f+g)(x)
$$

since $f$ and $g$ are even, showing that $f+g \in U_{e}$. This proves that $U_{e}$ is a subspace of $\mathbb{R}^{\mathbb{R}}$.
1.3. For any $r \in \mathbb{R}, f, g \in U_{o}$, we know

$$
(r \cdot f)(-x)=r \cdot(f(-x))=r \cdot(-f(x))=-(r \cdot f)(x)
$$

since $f$ is odd, showing that $r \cdot f \in U_{o}$. Similarly

$$
(f+g)(-x)=f(-x)+g(-x)=-f(x)-g(x)=-(f(x)+g(x))=-(f+g)(x)
$$

since $f$ and $g$ are odd, showing that $f+g \in U_{o}$. This proves that $U_{o}$ is a subspace of $\mathbb{R}^{\mathbb{R}}$.

We will use Prop. 1.45 to show that $\mathbb{R}^{\mathbb{R}}=U_{e} \oplus U_{o}$. We first show that $U_{e} \cap$ $U_{o}=\{z\}$ (remembering that $z$ is the zero element in $\mathbb{R}^{\mathbb{R}}$ ), and then show that $U_{e}+U_{o}=\mathbb{R}^{\mathbb{R}}$.
2. Assume that $f \in U_{e} \cap U_{o}$, or in other words that the function $f$ is both even and odd. Then for any $x \in \mathbb{R}$ we have

$$
f(x)=f(-x)
$$

since $f$ is even, but also that

$$
f(-x)=-f(x)
$$

since $f$ is odd. Together this means that $-f(x)=f(x)$, which implies that $f(x)=0$. But if $f(x)=0$ for all $x \in \mathbb{R}$, then $f$ is the zero function $z$. This shows $U_{e} \cap U_{o}=\{z\}$.
3. For any $g \in \mathbb{R}^{\mathbb{R}}$, define functions $g_{e}$ and $g_{o}$ by

$$
g_{e}(x)=\frac{g(x)+g(-x)}{2}
$$

and

$$
g_{o}(x)=\frac{g(x)-g(-x)}{2}
$$

We claim that $g_{e} \in U_{e}$ and $g_{o} \in U_{o}$. First we check that $g_{e}$ is even:

$$
\begin{aligned}
g_{e}(-x) & =\frac{g(-x)+g(x)}{2} \\
& =\frac{g(x)+g(-x)}{2}=g_{e}(x)
\end{aligned}
$$

Next we check that $g_{o}$ is odd:

$$
\begin{aligned}
g_{o}(-x) & =\frac{g(-x)-g(x)}{2} \\
& =\frac{-g(x)+g(-x)}{2} \\
& =-\frac{g(x)-g(-x)}{2} \\
& =-g_{o}(x) .
\end{aligned}
$$

We also have

$$
g_{e}+g_{o}(x)=\frac{g(-x)+g(x)}{2}+\frac{g(-x)-g(x)}{2}=g(x),
$$

so $g_{e}+g_{o}=g$. This shows that every function $g$ can be written as the sum of an even function $g_{e}$ and an odd function $g_{o}$, proving that $\mathbb{R}^{\mathbb{R}}=U_{e}+U_{o}$.

By Prop. 1.45 , we conclude that $\mathbb{R}^{\mathbb{R}}=U_{e} \oplus U_{o}$.

Question 1. Let $S$ be a set, and let $U$ be the vector space over $\mathbb{F}$. Recall that $U^{S}$ is the set of functions $f: S \rightarrow U$. Given functions $f, g \in U^{S}$ and $a \in \mathbb{F}$, we define $f+g \in U^{S}$ and $a \cdot f \in U^{S}$ by

$$
\begin{gathered}
(f+g)(x)=f(x)+g(x) \\
a \cdot f(x)=a \cdot(f(x))
\end{gathered}
$$

Prove that $U^{S}$ is a vector space over $\mathbb{F}$.
Proof. We need to go through the definition of vector space and check the following conditions.

1. $u+v=v+u$ for all $u, v \in U^{S}$.
2. $u+(v+w)=(u+v)+w$ and $(a b) v=a(b v)$ for all $u, v, w \in U^{S}$ and all $a, b \in \mathbb{F}$
3. There exists an element $0 \in U^{S}$, called the zero vector, such that $v+0=v$ for all $v \in U^{S}$
4. For every $v \in U^{S}$, there exists $w \in U^{S}$ such that $v+w=0$
5. $1 \cdot v=v$ for all $v \in U^{S}$
6. $a \cdot(u+v)=a \cdot u+a \cdot v$ and $(a+b) \cdot v=a \cdot v+b \cdot v$ for all $a, b \in F$ and all $u, v \in U^{S}$
7. By definition of the sum of elements in $U^{S}$, we have:

$$
\begin{aligned}
(u+v)(x) & =u(x)+v(x) \\
& =v(x)+u(x) \\
& =(v+u)(x)
\end{aligned}
$$

The second equality holds by the commutativity property of the vector space $U$.
Therefore $u+v=v+u$ for all $u, v \in U^{S}$.
2. By definition of the sum of elements in $U^{S}$, we have:

$$
\begin{aligned}
(u+(v+w))(x) & =u(x)+(v+w)(x) \\
& =u(x)+(v(x)+w(x))
\end{aligned}
$$

The associativity property of the vector space $U$ shows that:

$$
\begin{aligned}
(u(x)+(v(x)+w(x)) & =(u(x)+v(x))+w(x) \\
& =(u+v)(x)+w(x) \\
& =((u+v)+w)(x)
\end{aligned}
$$

Therefore $(u+(v+w))(x)=((u+v)+w)(x)$. So we have $u+(v+w)=(u+v)+w$.
By definition of scalar multiplication in $U^{S}$, we have:

$$
(a \cdot(b \cdot v))(x)=a \cdot((b \cdot v)(x))=a \cdot(b \cdot v(x))
$$

The associativity property of the vector space $U$ shows that:

$$
\begin{aligned}
a \cdot(b \cdot v(x)) & =(a \cdot b) \cdot v(x) \\
& =((a \cdot b) \cdot v)(x)
\end{aligned}
$$

Therefore $(a \cdot(b \cdot v))(x)=((a \cdot b) \cdot v)(x)$. So we have $a \cdot(b \cdot v)=(a \cdot b) \cdot v$.
3. The zero element in $U^{S}$ is the function $z: S \rightarrow U$ defined by $z(x)=0$ for all $x \in S$. For every function $v \in U^{S}$, we have $(v+z)(x)=v(x)+z(x)=v(x)+0=v(x)$ since 0 is the additive identity in $U$. Therefore $v+z=v$ for all $v \in U^{S}$.
4. For every $v \in U^{S}$, the additive inverse in $U^{S}$ is the function $\tilde{v}: S \rightarrow U$ defined by $\tilde{v}(x)=-v(x)$ for all $x \in S$. We have $(v+\tilde{v})(x)=v(x)+\tilde{v}(x)=v(x)+(-v(x))=$ 0 since $-v(x)$ is the additive inverse of $v(x) \in U$. Therefore $v+\tilde{v}=0$, so $\tilde{v}$ is the additive inverse of $v \in U^{S}$.
5. For all $v \in U^{S},(1 \cdot v)(x)=1 \cdot v(x)=v(x)$. Therefore $1 \cdot v=v$ for all $v \in U^{S}$.
6. By definition of addition and scalar multiplication in $U^{S}$, we have:

$$
\begin{aligned}
(a \cdot(u+v))(x) & =a \cdot((u+v)(x)) \\
& =a \cdot(u(x)+v(x))
\end{aligned}
$$

The distributive property of the vector space $U$ shows that:

$$
\begin{aligned}
a \cdot(u(x)+v(x)) & =a \cdot u(x)+a \cdot v(x) \\
& =(a \cdot u)(x)+(a \cdot v)(x) \\
& =(a \cdot u+a \cdot v)(x)
\end{aligned}
$$

Therefore $(a \cdot(u+v))(x)=(a \cdot u+a \cdot v)(x)$, so we have $a \cdot(u+v)=a \cdot u+a \cdot v$.
Similarly, by definition of addition and scalar multiplication in $U^{S}$, we have:

$$
((a+b) \cdot v)(x)=(a+b) \cdot v(x)
$$

The distributive property of the vector space $U$ shows that:

$$
\begin{aligned}
(a+b) \cdot v(x) & =a \cdot v(x)+b \cdot v(x) \\
& =(a \cdot v)(x)+(b \cdot v)(x) \\
& =(a \cdot v+b \cdot v)(x)
\end{aligned}
$$

Therefore $((a+b) \cdot v)(x)=(a \cdot v+b \cdot v)(x)$, so we have $(a+b) \cdot v=a \cdot v+b \cdot v$.
The statements above show that $U^{S}$ satisfies all the conditions of a vector space (see Definition 1.19 from our textbook), so $U^{S}$ is a vector space over $\mathbb{F}$.

Question 2. Let $U_{1}=\{(a, 0,0) \mid a \in \mathbb{F}\}$ and $U_{2}=\{(b, b, 0) \mid b \in \mathbb{F}\}$. There are both subsets of $\mathbb{F}^{3}$.
a) Prove that $U_{1}$ and $U_{2}$ are subspaces of $\mathbb{F}^{3}$
b) Prove that $U_{1}+U_{2}=\{(x, y, 0 \mid x, y \in \mathbb{F})\}$

Proof. a.1) The zero element in $\mathbb{F}^{3}$ is a vector z defined by $z=(0,0,0)$. Therefore $z=(0,0,0) \in U_{1}$. For any $r \in \mathbb{F}$ and $a_{1}=\left(x_{1}, 0,0\right), a_{2}=\left(x_{2}, 0,0\right) \in U_{1}$, we have $r \cdot a_{1}=\left(r \cdot x_{1}, 0,0\right), a_{1}+a_{2}=\left(x_{1}+x_{2}, 0,0\right)$, therefore $r \cdot a_{1} \in U_{1}$ and $a_{1}+a_{2} \in U_{1}$. Hence $U_{1}$ is a subspace of $\mathbb{F}^{3}$.
a.2) $z=(0,0,0) \in U_{2}$, so $U_{2}$ contains the zero element. For any $t \in \mathbb{F}$ and $b_{1}=\left(y_{1}, y_{1}, 0\right), b_{2}=\left(y_{2}, y_{2}, 0\right) \in U_{2}$, we have $z \cdot b_{1}=\left(r \cdot y_{1}, r \cdot y_{1}, 0\right), b_{1}+b_{2}=$ $\left(y_{1}+y_{2}, y_{1}+y_{2}, 0\right)$, therefore $r \cdot b_{1} \in U_{2}$ and $b_{1}+b_{2} \in U_{2}$. Hence $U_{2}$ is a subspace of $\mathbb{F}^{3}$.
b) Generally speaking, if we are asked to prove that two sets $A$ and $B$ are equal, the most common way is to show that $A \subset B$ and $B \subset A$. So now let us denote the set $\{(x, y, 0) \mid x, y \in \mathbb{F}\}$ by $W$.

First, we will show that $U_{1}+U_{2} \subset W$. For any $a=(x, 0,0) \in U_{1}$ and $b=$ $(y, y, 0) \in U_{2}$, we have $a+b=(x+y, y, 0) \in U$, so $U_{1}+U_{2} \subset W$.

Second, we will show that $W \subset U_{1}+U_{2}$, for any $c=(x, y, 0) \in W$, we can write $c$ as $c=c_{1}+c_{2}$, here $c_{1}=(x-y, 0,0) \in U_{1}$ and $c_{2}=(y, y, 0) \in U_{2}$. Hence $W \subset U_{1}+U_{2}$.

Combining the two statements above, we have proved that $U_{1}+U_{2}=\{(x, y, 0) \mid x, y \in$ $F\}$.

Question 3. Let $V$ be a vector space, and let $U_{1}$ and $U_{2}$ be subspaces of $V$.
a) Their intersection $U_{1} \cap U_{2}$ consists of all vectors that belongs to both subspaces:

$$
U_{1} \cap U_{2}=\left\{v \in V \mid v \in U_{1} \text { and } v \in U_{2}\right\}
$$

Prove that $U_{1} \cap U_{2}$ is always a subspace of $V$.
b) Their union $U_{1} \cup U_{2}$ consists of all vectors that belong to either subspace:

$$
U_{1} \cup U_{2}=\left\{v \in V \mid v \in U_{1} \text { or } v \in U_{2}\right\}
$$

Prove that $U_{1} \cup U_{2}$ is a subspace of $V$ if and only if one subspace in contained in the other

Proof. a) $U_{1}, U_{2}$ are both subspaces of $V$, so $0 \in U_{1} \cap U_{2}$. For any $r \in \mathbb{F}$ and $a_{1}, a_{2} \in U_{1} \cap U_{2}$, we know $r \cdot a_{1} \in U_{1}$ and $r \cdot a_{1} \in U_{2}$ (this is because $U_{1}, U_{2}$ are both vector spaces). We also have $a_{1}+a_{2} \in U_{1}, a_{1}+a_{2} \in U_{2}$, hence $r \cdot a_{1} \in U_{1} \cap U_{2}$ and $a_{1}+a_{2} \in U_{1} \cap U_{2}$. Therefore $U_{1} \cap U_{2}$ is a subspace of $V$.
b) Suppose $U_{1} \subset U_{2}$, then $U_{1} \cup U_{2}=U_{2}$, so $U_{1} \cup U_{2}$ is a subspace of $V$. We can use the same argument to show that if $U_{2} \subset U_{1}$, then $U_{1} \cup U_{2}=U_{1}$ is a subspace of $V$.

On the other hand, if $U_{1} \cup U_{2}$ is a subspace, we assume $U_{1} \not \subset U_{2}$ and $U_{2} \not \subset U_{1}$ and try to get a contradiction. Since $U_{1} \not \subset U_{2}$, we can find an element $u_{1} \in U_{1}$ but $u_{1} \notin U_{2}$ (otherwise it means every element in $U_{1}$ belongs to $U_{2}$, so $U_{1} \subset U_{2}$, which contradicts with our assumption), and meanwhile we can find an element $u_{2} \in U_{2}$ but $u_{2} \notin U_{1}$ (otherwise it means every element in $U_{2}$ belongs to $U_{1}$, so $U_{2} \subset U_{1}$, which contradicts with our assumption).

Since this element $u_{1}$ is in $U_{1}$, we know $u_{1} \in U_{1} \cup U_{2}$; similarly, since $u_{2} \in U_{2}$, we know $u_{2} \in U_{1} \cup U_{2}$. Because we have assumed that $U_{1}+U_{2}$ is a vector space, this implies that $u_{1}+u_{2} \in U_{1} \cup U_{2}$. So $u_{1}+u_{2}$ either equals some $a \in U_{1}$ or some $b \in U_{2}$.

If $u_{1}+u_{2}=a \in U_{1}$, then adding both sides of the equation by $-u_{1}$, by definition of the additive inverse and additive identity, we have

$$
u_{2}=-u_{1}+u_{1}+u_{2}=a-u_{1} \in U_{1} .
$$

But this contradicts the definition of $u_{2}$ as an element that is not in $U_{1}$.
If $u_{1}+u_{2}=b \in U_{2}$, then adding both sides of the equation by $-u_{2}$, by definition of the additive inverse and additive identity, we have $u_{1}=-u_{2}+u_{2}+u_{1}=b-u_{2} \in$ $U_{2}$, which contradicts the definition of $u_{1}$ as an element that is not in $U_{2}$.

Summarizing the two statements above, we have a contradiction because $u_{1}+$ $u_{2} \in U_{1} \cup U_{2}$, but it does not belong to either $U_{1}$ or $U_{2}$. Therefore our assumption that neither subspace was contained in the other must have been wrong.

Question 4. Let $U_{1}=\{(-a, a, 0) \mid a \in \mathbb{F}\}$, let $U_{2}=\{(0, b,-b) \mid b \in \mathbb{F}\}$, and let $U_{3}=\{(c, 0,-c) \mid c \in \mathbb{F}\}$. These are all subspaces of $\mathbb{F}^{3}$ (you may assume this without proof).
a) Describe the subspaces $U_{1}+U_{2}+U_{3}$ by filling in the blank by an equation involving $x, y$, and $z$ :

$$
U_{1}+U_{2}+U_{3}=\left\{\left.(x, y, z) \in \mathbb{F}^{3}\right|_{\square}\right\}
$$

b) Let $W=U_{1}+U_{2}+U_{3}$. Is $W$ the direct sum of $U_{1}, U_{2}$, and $U_{3}$ ? Prove or disprove.

Proof. a) We fill in the blank with " $x+y+z=0$ ". In other words, denote the set $\left\{(x, y, z) \in \mathbb{F}^{3} \mid x+y+z=0\right\}$ by $V$; we claim that $U_{1}+U_{2}+U_{3}=V$.
a.1) First we will prove that $U_{1}+U_{2}+U_{3} \subset V$. For any

$$
u_{1}=(a,-a, 0) \in U_{1}, u_{2}=(0, b,-b) \in U_{2}, u_{3}=(c, 0,-c) \in U_{3}
$$

their sum is

$$
u_{1}+u_{2}+u_{3}=(a+c,-a+b,-b-c)
$$

This vector which satisfies $(a+c)+(-a+b)+(-b-c)=0$, therefore $u_{1}+u_{2}+u_{3} \in V$. Hence $U_{1}+U_{2}+U_{3} \subset V$.
a.2) Next we will prove that $V \subset U_{1}+U_{2}+U_{3}$. For any $v=(x, y, z) \in V$, we know that $z=-x-y$. So $v=(0,0,0)+(0,-y, y)+(x, 0,-x)$. Here $(0,0,0) \in U_{1}$, $(0,-y, y) \in U_{2},(x, 0,-x) \in U_{3}$, so $v \in U_{1}+U_{2}+U_{3}$. Therefore $V \subset U_{1}+U_{2}+U_{3}$.
b) No. Fix any $a \in \mathbb{F}$ which satisfies $a \neq 0$. We have

$$
(0,0,0)=(-a, a, 0)+(0,-a, a)+(a, 0,-a)
$$

. Each of these three vectors is nonzero, but $(-a, a, 0) \in U_{1},(0,-a, a) \in U_{2}$, $(a, 0,-a) \in U_{3}$.

Hence we have more than one way to write 0 as a sum $u_{1}+u_{2}+u_{3}$, where each $u_{i} \in U_{i}$ (besides the "trivial" way $0=0+0+0$ ). By Prop. 1.44 from our textbook, this proves that $U_{1}+U_{2}+U_{3}$ is not a direct sum.

Question 5. Let $U$ be the following subset of $\mathbb{F}^{\infty}$ :

$$
U=\left\{\left(v_{1}, v_{2}, v_{3} \ldots\right) \in \mathbb{F}^{\infty} \mid v_{i+3}=v_{i} \text { for all i }\right\}
$$

Prove that $U$ is a subspace of $\mathbb{F}^{\infty}$.
Proof. The zero element $z=\left(z_{1}, z_{2}, z_{3}, \ldots\right) \in \mathbb{F}^{\infty}$ is defined by $z_{i}=0$ for all $i \in \mathbb{N}$. For every $i \in \mathbb{N}, z_{i+3}=0=z_{i}$, so $z \in U$.

For any $x=\left(x_{1}, x_{2}, x_{3}, \ldots\right) \in U, y=\left(y_{1}, y_{2}, y_{3}, \ldots\right) \in U$, and any $r \in \mathbb{F}$, we have $r \cdot x=\left(r \cdot x_{1}, r \cdot x_{2}, r \cdot x_{3}, \ldots\right)$ and $x+y=\left(x_{1}+y_{1}, x_{2}+y_{2}, x_{3}+y_{3}, \ldots\right)$.
Since $x$ and $y$ are in $U$, we know that $x_{i+3}=x_{i}$ and $y_{i+3}=y_{i}$, so

$$
r \cdot x_{i+3}=r \cdot x_{i} \text { and } x_{i+3}+y_{i+3}=x_{i}+y_{i} .
$$

This shows that $r \cdot x \in U$ and $x+y \in U$, so $U$ is a subspace of $\mathbb{F}^{\infty}$.
Question 6. Say that a sequence $v=\left(v_{1}, v_{2}, v_{3} \ldots\right) \in \mathbb{F}^{\infty}$ is periodic if there exists some positive number $k \in \mathbb{N}$ such that $v_{i+k}=v_{i}$ for all $i$. Let $W$ be the set of all periodic sequences. Is $W$ a subspace of $\mathbb{F}^{\infty}$ ? Prove or disprove.

Proof. Yes, $W$ is a subspace of $\mathbb{F}^{\infty}$. Let us say that a sequence $v$ is " $k$-periodic" if $v_{i+k}=v_{i}$ for all $i$.

The zero element $z=\left(z_{1}, z_{2}, z_{3}, \ldots\right) \in \mathbb{F}^{\infty}$ is defined by $z_{i}=0$ for all $i \in \mathbb{N}$. For every $i \in \mathbb{N}, z_{i+1}=0=z_{i}$, so $z$ is 1-periodic. Therefore $z \in W$.

For any $x=\left(x_{1}, x_{2}, x_{3} \ldots\right) \in W, y=\left(y_{1}, y_{2}, y_{3} \ldots\right) \in W$, and any $r \in \mathbb{F}$, assume that $x$ is $k$-periodic and $y$ is $m$-periodic. This means $x_{i+k}=x_{i}$ for all $i$, and $y_{i+m}=y_{i}$ for all $i$. Then we have:

$$
r \cdot x=\left(r \cdot x_{1}, r \cdot x_{2}, r \cdot x_{3}, \ldots\right) \text { and } x+y=\left(x_{1}+y_{1}, x_{2}+y_{2}, x_{3}+y_{3}, \ldots\right)
$$

Since

$$
r \cdot x_{i+k}=r \cdot x_{i}
$$

we see that $r \cdot x$ is $k$-periodic. Hence $r \cdot x \in W$.
The more difficult part is to show that $x+y$ is periodic. The difficulty comes because $x+y$ might not be $k$-periodic or $m$-periodic. However, it turns out that it is $(k m)$-periodic, as we now prove. For any $i \in \mathbb{N}$, we have

$$
\begin{aligned}
x_{i} & =x_{i+k} \\
& =x_{i+k+k} \\
& =x_{i+3 k} \\
& =\ldots \\
& =x_{i+m k}
\end{aligned}
$$

where we quoted the $k$-periodicity of $x$ multiple times to go from each line to the next ( $m$ times in total). Similarly,

$$
\begin{aligned}
y_{i} & =y_{i+m} \\
& =y_{i+2 m} \\
& =y_{i+3 m} \\
& =\ldots \\
& =y_{i+k m}
\end{aligned}
$$

since $y$ is $m$-periodic. Together, these imply that

$$
x_{i+k m}+y_{i+k m}=x_{i}+y_{i} .
$$

This shows that $x+y$ is $(k m)$-periodic, so $x+y \in W$. We conclude that $W$ is a subspace of $F^{\infty}$.

