
Math 113 Homework 1 Solutions

Solutions by Guanyang Wang, with edits by Tom Church.
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Exercise 1A.10. Find two distinct square roots of i.

Proof. We first explain how we can find the square roots (students did not have to
write this part down). If a + bi is a square root of i, this means a and b are real
numbers such that

(a + bi)2 = i
Then

i = (a + bi)2

= (a2 − b2) + (ab + ab)i

= a2 − b2 + 2abi

Since 0 + 1 · i = (a2 − b2) + 2abi, we conclude that a2 = b2 and 2ab = 1. The
equation a2 = b2 implies that a = b or a = −b. However, if a = −b, then we would
have 2ab = −2b2 = 1, which is impossible because b is a real number.

So we know we must have a = b. The equation 2ab = 1 now becomes 2b2 = 1,
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Finally, we square each of the numbers we found, to check that they really are
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Thus the two numbers above are indeed square roots of i. �

Exercise 1A.10. Find x ∈ R4 such that
(4,−3, 1, 7) + 2x = (5, 9,−6, 8)

Proof. (We first explain how to find the vector x; students did not need to write
up this part.) Subtracting (4,−3, 1, 7) from both sides of the equations above gives

2x = (1, 12,−7, 1)
Multiplying both sides of the equation above by 1

2 gives

x = ( 1
2 , 6,−

7
2 ,

1
2 )

We now check that this vector does indeed satisfy the desired equation.

(4,−3, 1, 7) + 2x = (4,−3, 1, 7) + 2 · (1

2
, 6,−7

2
,

1

2
)

= (4,−3, 1, 7) + (1, 12,−7, 1)

= (5, 9,−6, 8)

Therefore x = ( 1
2 , 6,−

7
2 ,

1
2 ) satisfies the original equation. �

Exercise 1B.1. Prove that −(−v) = v for every v ∈ V .

Proof. For any v ∈ V , by definition of additive inverse of −v, we have (−v) +
(−(−v)) = 0.

Adding v on both sides of the equation gives

(∗) v + (−v) + (−(−v)) = v + 0

By definition of the additive inverse of v we know that v + (−v) = 0, so the
left side of the equation (∗) equals 0 + (−(−v)). By commutativity, this equals
(−(−v)) + 0. Finally, this equals −(−v) by definition of additive identity.

Meanwhile, the right side of (∗) equals v by definition of additive identity. There-
fore, the equality (∗) implies −(−v) = v. �

Exercise 1B.2. Suppose a ∈ F,v ∈ V and av = 0. Prove that a = 0 or v = 0.
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Proof. We want to prove either a = 0 or v = 0. If a = 0, then the claim is satisfied.
Therefore suppose a 6= 0. Multiplying both sides of the assumed equation av = 0
by 1

a , we have
1
aav = 1

a0
The associative property shows that the left side of the equation above equals 1v,
which equals v by definition of multiplicative identity. The right side of the equation
above equals 0 by Proposition 1.30 in the textbook. Thus v = 0, completing the
proof. �

Exercise 1C.4. Suppose b ∈ R. Show that the set of continuous real-valued

functions f on the interval [0, 1] such that
∫ 1

0
f = b is a subspace of R[0,1] if and

only if b = 0.

Proof. Let

U = {f ∈ R[0,1]: f is continuous and
∫ 1

0
f = b}

Recall that the zero element in R[0,1] is the “zero function” z : [0, 1] → R defined
by z(x) = 0 for all x ∈ [0, 1].

If U is a subspace of R[0,1], then the zero element is in U . This means that z is

continuous and
∫ 1

0
z = b. However we know that

∫ 1

0
z =

∫ 1

0
0 = 0, so the only way

that
∫ 1

0
z = b can happen is if b = 0. (Comment from TC: this shows that when

b 6= 0, the set U violates the first property of a subspace, because it does not contain
the zero element. It turns out that it also violates the second and third properties
of a subspace, i.e. it is not closed under addition or multiplication. However we do
not need to consider these properties; once we’ve shown it violates one property,
it’s not a subspace.)

Conversely, suppose b = 0, so the set U is

U = {f ∈ R[0,1]: f is continuous and
∫ 1

0
f = 0}.

Our goal is to show that U is a subspace.

First, the zero function z is continuous and
∫ 1

0
z =

∫ 1

0
0 = 0, so z ∈ U .

For any c ∈ R, f, g ∈ U , we know f + g and cf are continuous functions (we
were told this on the homework sheet). We also need the properties of integration

that
∫ 1

0
(f + g) =

∫ 1

0
f +

∫ 1

0
g and

∫ 1

0
(cf) = c

∫ 1

0
f . (TC: this should have been on

the homework sheet also.) Therefore:∫ 1

0

(f + g) =

∫ 1

0

f +

∫ 1

0

g

= 0 + 0

= 0

and ∫ 1

0

(cf) = c

∫ 1

0

f

= c · 0
= 0

Therefore f + g ∈ U and cf ∈ U , showing that U is closed under addition and
scalar multiplication. We conclude that U is a subspace of R[0,1] �
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Exercise 1.C.20. Suppose
U = {(x, x, y, y) ∈ F4 : x, y ∈ F} .

Find a subspace W of F4 such that F4 = U ⊕W .

Proof. Let
W = {(a, 0, b, 0) ∈ F4 : a, b ∈ F} .

First we check W is a subspace of F4. The zero element 0 in the vector space F4 is
the vector (0, 0, 0, 0), thus 0 ∈W .

For any c ∈ F, any m = (m1, 0,m2, 0) ∈ W and any n = (n1, 0, n2, 0) ∈ W , we
have:

m + n = (m1 + n1, 0,m2 + n2, 0)

and

c ·m = (cm1, 0, cm2, 0)

Therefore m + n ∈W and c ·m ∈W . Therefore W is a subspace of F4.

Next, we check that U ⊕W = F4. First we will show that U +W = F4, then we
will check that U + W = U ⊕W using Prop. 1.45 (the Direct Sum Test for Two
Subspaces).

1. For any b = (b1, b2, b3, b4) ∈ F4, let us define vectors bU = (b2, b2, b4, b4) ∈ U
and bW = (b1 − b2, 0, b3 − b4, 0) ∈ W . Adding these we see that b = bU + bW , so
b ∈ U + W . This shows that every vector in F4 is in U + W , so U + W = F4.

2. Proposition 1.45 says that to check that U+W = U⊕W , we just need to check
that the intersection U ∩W is {0}. So assume that a = (a1, a2, a3, a4) ∈ U ∩W lies
in both U and W . We have a1 = a2, a3 = a4 since a ∈ U , and a2 = 0, a4 = 0 since
a ∈W . This implies

a1 = a2 = a3 = a4 = 0,
so a = 0. This shows that U ∩ W = {0}, so by Proposition 1.45 we know
U + W = U ⊕W is a direct sum.

�

Exercise 1.C.24. A function f : R −→ R is called even if
f(−x) = f(x)

for all x ∈ R. A function f : R −→ R is called odd if
f(−x) = −f(x)

for all x ∈ R. Let Ue denote the set of real-valued even functions on R and let Uo

denote the set of real-valued odd functions on R. Show that RR = Ue ⊕ Uo.

Proof. 1. First, we check that Ue and Uo are subspaces of RR. As above, the zero
element of RR is the zero function z : R→ R defined by z(x) = 0 for all x ∈ R.

1.1. z ∈ Ue since z(−x) = 0 = z(x) for every x ∈ R. Similarly, z ∈ Uo since
z(−x) = 0 = −0 = −z(x) for every x ∈ R.

1.2. For any r ∈ R, f, g ∈ Ue, we know

(r · f)(−x) = r · (f(−x)) = r · (f(x)) = (r · f)(x)

since f is even. This shows that r · f is even, i.e. that r · f ∈ Ue. Similarly

(f + g)(−x) = f(−x) + g(−x) = f(x) + g(x) = (f + g)(x)

since f and g are even, showing that f + g ∈ Ue. This proves that Ue is a subspace
of RR.
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1.3. For any r ∈ R, f, g ∈ Uo, we know

(r · f)(−x) = r · (f(−x)) = r · (−f(x)) = −(r · f)(x)

since f is odd, showing that r · f ∈ Uo. Similarly

(f + g)(−x) = f(−x) + g(−x) = −f(x)− g(x) = −(f(x) + g(x)) = −(f + g)(x)

since f and g are odd, showing that f + g ∈ Uo. This proves that Uo is a subspace
of RR.

We will use Prop. 1.45 to show that RR = Ue ⊕ Uo. We first show that Ue ∩
Uo = {z} (remembering that z is the zero element in RR), and then show that
Ue + Uo = RR.

2. Assume that f ∈ Ue ∩ Uo, or in other words that the function f is both even
and odd. Then for any x ∈ R we have

f(x) = f(−x)

since f is even, but also that

f(−x) = −f(x)

since f is odd. Together this means that−f(x) = f(x), which implies that f(x) = 0.
But if f(x) = 0 for all x ∈ R, then f is the zero function z. This shows Ue∩Uo = {z}.

3. For any g ∈ RR, define functions ge and go by

ge(x) =
g(x) + g(−x)

2
and

go(x) =
g(x)− g(−x)

2
We claim that ge ∈ Ue and go ∈ Uo. First we check that ge is even:

ge(−x) =
g(−x) + g(x)

2

=
g(x) + g(−x)

2
= ge(x).

Next we check that go is odd:

go(−x) =
g(−x)− g(x)

2

=
−g(x) + g(−x)

2

= −g(x)− g(−x)

2
= −go(x).

We also have

ge + go(x) =
g(−x) + g(x)

2
+

g(−x)− g(x)

2
= g(x),

so ge + go = g. This shows that every function g can be written as the sum of an
even function ge and an odd function go, proving that RR = Ue + Uo.

By Prop. 1.45, we conclude that RR = Ue ⊕ Uo. �
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Question 1. Let S be a set, and let U be the vector space over F. Recall that US

is the set of functions f : S → U . Given functions f, g ∈ US and a ∈ F, we define
f + g ∈ US and a · f ∈ US by

(f + g)(x) = f(x) + g(x)
a · f(x) = a · (f(x))

Prove that US is a vector space over F.

Proof. We need to go through the definition of vector space and check the following
conditions.
1. u + v = v + u for all u, v ∈ US .
2. u + (v + w) = (u + v) + w and (ab)v = a(bv) for all u, v, w ∈ US and all a, b ∈ F
3. There exists an element 0 ∈ US , called the zero vector, such that v + 0 = v for
all v ∈ US

4. For every v ∈ US , there exists w ∈ US such that v + w = 0
5. 1 · v = v for all v ∈ US

6. a · (u + v) = a · u + a · v and (a + b) · v = a · v + b · v for all a, b ∈ F and all
u, v ∈ US

1. By definition of the sum of elements in US , we have:

(u + v)(x) = u(x) + v(x)

= v(x) + u(x)

= (v + u)(x)

The second equality holds by the commutativity property of the vector space U .
Therefore u + v = v + u for all u, v ∈ US .
2. By definition of the sum of elements in US , we have:

(u + (v + w))(x) = u(x) + (v + w)(x)

= u(x) + (v(x) + w(x))

The associativity property of the vector space U shows that:

(u(x) + (v(x) + w(x)) = (u(x) + v(x)) + w(x)

= (u + v)(x) + w(x)

= ((u + v) + w)(x)

Therefore (u+(v+w))(x) = ((u+v)+w)(x). So we have u+(v+w) = (u+v)+w.
By definition of scalar multiplication in US , we have:

(a · (b · v))(x) = a · ((b · v)(x)) = a · (b · v(x))

The associativity property of the vector space U shows that:

a · (b · v(x)) = (a · b) · v(x)

= ((a · b) · v)(x)

Therefore (a · (b · v))(x) = ((a · b) · v)(x). So we have a · (b · v) = (a · b) · v.



7

3. The zero element in US is the function z : S → U defined by z(x) = 0 for all
x ∈ S. For every function v ∈ US , we have (v+z)(x) = v(x)+z(x) = v(x)+0 = v(x)
since 0 is the additive identity in U . Therefore v + z = v for all v ∈ US .

4. For every v ∈ US , the additive inverse in US is the function ṽ : S → U defined
by ṽ(x) = −v(x) for all x ∈ S. We have (v+ ṽ)(x) = v(x)+ ṽ(x) = v(x)+(−v(x)) =
0 since −v(x) is the additive inverse of v(x) ∈ U . Therefore v + ṽ = 0, so ṽ is the
additive inverse of v ∈ US .

5. For all v ∈ US , (1 · v)(x) = 1 · v(x) = v(x). Therefore 1 · v = v for all v ∈ US .
6. By definition of addition and scalar multiplication in US , we have:

(a · (u + v))(x) = a · ((u + v)(x))

= a · (u(x) + v(x))

The distributive property of the vector space U shows that:

a · (u(x) + v(x)) = a · u(x) + a · v(x)

= (a · u)(x) + (a · v)(x)

= (a · u + a · v)(x)

Therefore (a · (u + v))(x) = (a · u + a · v)(x), so we have a · (u + v) = a · u + a · v.
Similarly, by definition of addition and scalar multiplication in US , we have:

((a + b) · v)(x) = (a + b) · v(x)

The distributive property of the vector space U shows that:

(a + b) · v(x) = a · v(x) + b · v(x)

= (a · v)(x) + (b · v)(x)

= (a · v + b · v)(x)

Therefore ((a + b) · v)(x) = (a · v + b · v)(x), so we have (a + b) · v = a · v + b · v.
The statements above show that US satisfies all the conditions of a vector space

(see Definition 1.19 from our textbook), so US is a vector space over F. �

Question 2. Let U1 = {(a, 0, 0)|a ∈ F} and U2 = {(b, b, 0)|b ∈ F}. There are both
subsets of F3.

a) Prove that U1 and U2 are subspaces of F3

b) Prove that U1 + U2 = {(x, y, 0|x, y ∈ F)}

Proof. a.1) The zero element in F3 is a vector z defined by z = (0, 0, 0). Therefore
z = (0, 0, 0) ∈ U1. For any r ∈ F and a1 = (x1, 0, 0), a2 = (x2, 0, 0) ∈ U1, we have
r · a1 = (r ·x1, 0, 0), a1 + a2 = (x1 +x2, 0, 0), therefore r · a1 ∈ U1 and a1 + a2 ∈ U1.
Hence U1 is a subspace of F3.

a.2) z = (0, 0, 0) ∈ U2, so U2 contains the zero element. For any t ∈ F and
b1 = (y1, y1, 0), b2 = (y2, y2, 0) ∈ U2, we have z · b1 = (r · y1, r · y1, 0), b1 + b2 =
(y1 + y2, y1 + y2, 0), therefore r · b1 ∈ U2 and b1 + b2 ∈ U2. Hence U2 is a subspace
of F3.
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b) Generally speaking, if we are asked to prove that two sets A and B are equal,
the most common way is to show that A ⊂ B and B ⊂ A. So now let us denote
the set {(x, y, 0)|x, y ∈ F} by W .

First, we will show that U1 + U2 ⊂ W . For any a = (x, 0, 0) ∈ U1 and b =
(y, y, 0) ∈ U2, we have a + b = (x + y, y, 0) ∈ U , so U1 + U2 ⊂W .

Second,we will show that W ⊂ U1 + U2, for any c = (x, y, 0) ∈W , we can write
c as c = c1 + c2, here c1 = (x − y, 0, 0) ∈ U1 and c2 = (y, y, 0) ∈ U2. Hence
W ⊂ U1 + U2.

Combining the two statements above, we have proved that U1+U2 = {(x, y, 0)|x, y ∈
F}. �

Question 3. Let V be a vector space, and let U1 and U2 be subspaces of V .
a) Their intersection U1 ∩ U2 consists of all vectors that belongs to both sub-

spaces:
U1 ∩ U2 = {v ∈ V |v ∈ U1 and v ∈ U2}

Prove that U1 ∩ U2 is always a subspace of V .

b) Their union U1 ∪ U2 consists of all vectors that belong to either subspace:
U1 ∪ U2 = {v ∈ V |v ∈ U1 or v ∈ U2}

Prove that U1 ∪ U2 is a subspace of V if and only if one subspace in contained in
the other

Proof. a) U1, U2 are both subspaces of V , so 0 ∈ U1 ∩ U2. For any r ∈ F and
a1, a2 ∈ U1 ∩ U2, we know r · a1 ∈ U1 and r · a1 ∈ U2 (this is because U1, U2 are
both vector spaces). We also have a1 +a2 ∈ U1, a1 +a2 ∈ U2, hence r ·a1 ∈ U1∩U2

and a1 + a2 ∈ U1 ∩ U2. Therefore U1 ∩ U2 is a subspace of V .

b) Suppose U1 ⊂ U2, then U1 ∪U2 = U2, so U1 ∪U2 is a subspace of V . We can
use the same argument to show that if U2 ⊂ U1, then U1 ∪ U2 = U1 is a subspace
of V .

On the other hand, if U1 ∪ U2 is a subspace, we assume U1 6⊂ U2 and U2 6⊂ U1

and try to get a contradiction. Since U1 6⊂ U2, we can find an element u1 ∈ U1 but
u1 /∈ U2 (otherwise it means every element in U1 belongs to U2, so U1 ⊂ U2, which
contradicts with our assumption), and meanwhile we can find an element u2 ∈ U2

but u2 /∈ U1 (otherwise it means every element in U2 belongs to U1, so U2 ⊂ U1,
which contradicts with our assumption).

Since this element u1 is in U1, we know u1 ∈ U1 ∪ U2; similarly, since u2 ∈ U2,
we know u2 ∈ U1 ∪ U2. Because we have assumed that U1 + U2 is a vector space,
this implies thatu1 + u2 ∈ U1 ∪ U2. So u1 + u2 either equals some a ∈ U1 or some
b ∈ U2.

If u1 +u2 = a ∈ U1, then adding both sides of the equation by −u1, by definition
of the additive inverse and additive identity, we have

u2 = −u1 + u1 + u2 = a− u1 ∈ U1.

But this contradicts the definition of u2 as an element that is not in U1.
If u1 +u2 = b ∈ U2, then adding both sides of the equation by −u2, by definition

of the additive inverse and additive identity, we have u1 = −u2 +u2 +u1 = b−u2 ∈
U2, which contradicts the definition of u1 as an element that is not in U2.
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Summarizing the two statements above, we have a contradiction because u1 +
u2 ∈ U1 ∪U2, but it does not belong to either U1 or U2. Therefore our assumption
that neither subspace was contained in the other must have been wrong.

�

Question 4. Let U1 = {(−a, a, 0)|a ∈ F}, let U2 = {(0, b,−b)|b ∈ F}, and let
U3 = {(c, 0,−c)|c ∈ F}. These are all subspaces of F3(you may assume this without
proof).

a) Describe the subspaces U1 + U2 + U3 by filling in the blank by an equation
involving x, y, and z:

U1 + U2 + U3={(x, y, z) ∈ F3| }
b) Let W = U1 + U2 + U3. Is W the direct sum of U1, U2, and U3? Prove or

disprove.

Proof. a) We fill in the blank with “x + y + z = 0′′. In other words, denote the set
{(x, y, z) ∈ F3|x + y + z = 0} by V ; we claim that U1 + U2 + U3 = V .

a.1) First we will prove that U1 + U2 + U3 ⊂ V . For any
u1 = (a,−a, 0) ∈ U1, u2 = (0, b,−b) ∈ U2, u3 = (c, 0,−c) ∈ U3,

their sum is

u1 + u2 + u3 = (a + c,−a + b,−b− c).

This vector which satisfies (a+c)+(−a+b)+(−b−c) = 0, therefore u1+u2+u3 ∈ V .
Hence U1 + U2 + U3 ⊂ V .

a.2) Next we will prove that V ⊂ U1 + U2 + U3. For any v = (x, y, z) ∈ V , we
know that z = −x− y. So v = (0, 0, 0) + (0,−y, y) + (x, 0,−x). Here (0, 0, 0) ∈ U1,
(0,−y, y) ∈ U2, (x, 0,−x) ∈ U3, so v ∈ U1 +U2 +U3. Therefore V ⊂ U1 +U2 +U3.

b) No. Fix any a ∈ F which satisfies a 6= 0. We have

(0, 0, 0) = (−a, a, 0) + (0,−a, a) + (a, 0,−a)

. Each of these three vectors is nonzero, but (−a, a, 0) ∈ U1, (0,−a, a) ∈ U2,
(a, 0,−a) ∈ U3.

Hence we have more than one way to write 0 as a sum u1 + u2 + u3, where each
ui ∈ Ui (besides the “trivial” way 0 = 0+0+0). By Prop. 1.44 from our textbook,
this proves that U1 + U2 + U3 is not a direct sum.

�

Question 5. Let U be the following subset of F∞:
U = {(v1, v2, v3...) ∈ F∞|vi+3 = vi for all i }

Prove that U is a subspace of F∞.

Proof. The zero element z = (z1, z2, z3, ...) ∈ F∞ is defined by zi = 0 for all i ∈ N.
For every i ∈ N, zi+3 = 0 = zi, so z ∈ U .

For any x = (x1, x2, x3, ...) ∈ U , y = (y1, y2, y3, ...) ∈ U , and any r ∈ F, we have
r · x = (r · x1, r · x2, r · x3, ...) and x + y = (x1 + y1, x2 + y2, x3 + y3, ...).

Since x and y are in U , we know that xi+3 = xi and yi+3 = yi, so
r · xi+3 = r · xi and xi+3 + yi+3 = xi + yi.

This shows that r · x ∈ U and x + y ∈ U , so U is a subspace of F∞. �

Question 6. Say that a sequence v = (v1, v2, v3...) ∈ F∞ is periodic if there exists
some positive number k ∈ N such that vi+k = vi for all i. Let W be the set of all
periodic sequences. Is W a subspace of F∞? Prove or disprove.
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Proof. Yes, W is a subspace of F∞. Let us say that a sequence v is “k-periodic” if
vi+k = vi for all i.

The zero element z = (z1, z2, z3, ...) ∈ F∞ is defined by zi = 0 for all i ∈ N. For
every i ∈ N, zi+1 = 0 = zi, so z is 1-periodic. Therefore z ∈W .

For any x = (x1, x2, x3...) ∈ W , y = (y1, y2, y3...) ∈ W , and any r ∈ F, assume
that x is k-periodic and y is m-periodic. This means xi+k = xi for all i, and
yi+m = yi for all i. Then we have:

r · x = (r · x1, r · x2, r · x3, ...) and x + y = (x1 + y1, x2 + y2, x3 + y3, ...).
Since

r · xi+k = r · xi ,
we see that r · x is k-periodic. Hence r · x ∈W .

The more difficult part is to show that x + y is periodic. The difficulty comes
because x+ y might not be k-periodic or m-periodic. However, it turns out that it
is (km)-periodic, as we now prove. For any i ∈ N, we have

xi = xi+k

= xi+k+k

= xi+3k

= ...

= xi+mk

where we quoted the k-periodicity of x multiple times to go from each line to the
next (m times in total). Similarly,

yi = yi+m

= yi+2m

= yi+3m

= ...

= yi+km

since y is m-periodic. Together, these imply that

xi+km + yi+km = xi + yi.

This shows that x + y is (km)-periodic, so x + y ∈ W . We conclude that W is a
subspace of F∞. �


