MATH 113 HOMEWORK 1 SOLUTIONS

Solutions by Guanyang Wang, with edits by Tom Church.

Exercise 1.A.2. Show that *HT\/& is a cube root of 1 (meaning that its cube
equals 1).

Proof. We can use the definition of complex multiplication, we have

(—1+\/§i>2:—1+\/§ix—1+\/§i
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Exercise 1A.10. Find two distinct square roots of 1.

(—1+\/§i>3:—1+\/§ix 1 —3Bi

Proof. We first explain how we can find the square roots (students did not have to
write this part down). If a + bi is a square root of 7, this means a and b are real
numbers such that

(a+bi)? =i
Then

i = (a+bi)?
= (a® = b*) + (ab + ab)i
=a® — b? + 2abi

Since 0 + 1 -7 = (a? — b?) + 2abi, we conclude that a®> = b? and 2ab = 1. The
equation a’? = b? implies that a = b or a = —b. However, if a = —b, then we would
have 2ab = —2b? = 1, which is impossible because b is a real number.

So we know we must have a = b. The equation 2ab = 1 now becomes 2b% = 1,
which leads to a = b = :t@. Hence the only two possibilities for square roots of ¢

are:
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Finally, we square each of the numbers we found, to check that they really are
square roots of 4.

<2+21> :<2+2z>x<2+21>
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Thus the two numbers above are indeed square roots of i. (I

Exercise 1A.10. Find z € R?* such that
(4a _37 17 7) +2r = (57 97 _63 8)

Proof. (We first explain how to find the vector z; students did not need to write
up this part.) Subtracting (4,—3,1,7) from both sides of the equations above gives
2¢ = (1,12,-7,1)

Multiplying both sides of the equation above by % gives
_ (1 71
z=1(3,6,-3,3)
We now check that this vector does indeed satisfy the desired equation.
1 71
(4,-3,1,7) +22 = (4,=3,1,7) +2- (3,6, =5, 5)
=(4,-3,1,7)+ (1,12, -7,1)
= (57 97 _67 8)

Therefore x = (%, 6, —%, %) satisfies the original equation. |

Exercise 1B.1. Prove that —(—v) = v for every v € V.

Proof. For any v € V, by definition of additive inverse of —v, we have (—v) +
(=(=v)) = 0.

Adding v on both sides of the equation gives
(%) v+ (=v) +(=(-v)) =v+0

By definition of the additive inverse of v we know that v + (—v) = 0, so the
left side of the equation (x) equals 0 + (—(—v)). By commutativity, this equals
(—=(—v)) + 0. Finally, this equals —(—v) by definition of additive identity.

Meanwhile, the right side of (x) equals v by definition of additive identity. There-
fore, the equality (*) implies —(—v) = v. O

Exercise 1B.2. Suppose a € F,uo € V and av = 0. Prove that a =0 or v = 0.



Proof. We want to prove either a = 0 or v = 0. If ¢ = 0, then the claim is satisfied.
Therefore suppose a # 0. Multiplying both sides of the assumed equation av = 0
by %, we have

%av = %O
The associative property shows that the left side of the equation above equals 1v,
which equals v by definition of multiplicative identity. The right side of the equation
above equals 0 by Proposition 1.30 in the textbook. Thus v = 0, completing the

proof. O

Exercise 1C.4. Suppose b € R. Show that the set of continuous real-valued
functions f on the interval [0,1] such that fol f = b is a subspace of RI%! if and
only if b= 0.

Proof. Let
U = {f e RO fis continuous and fol f="0b}
Recall that the zero element in RI%! is the “zero function” z: [0,1] — R defined
by z(z) =0 for all z € [0,1].
If U is a subspace of R[]
continuous and fol z = b. However we know that fol z= fol 0 = 0, so the only way

, then the zero element is in U. This means that z is

that fol z = b can happen is if b = 0. (Comment from TC: this shows that when
b # 0, the set U violates the first property of a subspace, because it does not contain
the zero element. It turns out that it also violates the second and third properties
of a subspace, i.e. it is not closed under addition or multiplication. However we do
not need to consider these properties; once we’ve shown it violates one property,
it’s not a subspace.)

Conversely, suppose b = 0, so the set U is
U = {f e RIOU: fis continuous and fol f =0}
Our goal is to show that U is a subspace.
First, the zero function z is continuous and fol z = fol 0=0,s0z€U.
For any ¢ € R, f,g € U, we know f + g and c¢f are continuous functions (we
were told this on the homework sheet). We also need the properties of integration

that fol(f +g) = f01 f+ folg and fol(cf) = cfol f. (TC: this should have been on
the homework sheet also.) Therefore:

/Ol(f+g)=/01f+/olg

=040
=0

/Ol(cf)zc/olf
=c-0

and

Therefore f + g € U and cf € U, showing that U is closed under addition and
scalar multiplication. We conclude that U is a subspace of RI%:1 ]
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Exercise 1.C.20. Suppose
U={(z,z,y,y) € F* 12,y € F}
Find a subspace W of F* such that F* = U @& W.

Proof. Let
W = {(a,0,b,0) € F* : a,b € F} )
First we check W is a subspace of F*. The zero element 0 in the vector space F* is
the vector (0,0,0,0), thus 0 € W.
For any ¢ € F, any m = (m1,0,m2,0) € W and any n = (n1,0,n2,0) € W, we
have:

m+n = (my +ny1,0,ma + na,0)
and
c-m = (emy, 0,cma, 0)
Therefore m +n € W and ¢-m € W. Therefore W is a subspace of F*.

Next, we check that U @ W = F*. First we will show that U + W = F*, then we
will check that U + W = U & W using Prop. 1.45 (the Direct Sum Test for Two
Subspaces).

1. For any b = (by, b, b3, bs) € F4, let us define vectors by = (b, ba, by, by) € U
and by = (by — b2,0,b3 — b4,0) € W. Adding these we see that b = by + by, so
b€ U + W. This shows that every vector in F* is in U + W, so U + W = F*.

2. Proposition 1.45 says that to check that U+W = U@ W, we just need to check
that the intersection UNW is {0}. So assume that a = (a1, ag, ag,as) € UNW lies
in both U and W. We have a1 = a2, ag = a4 since a € U, and ay = 0, ag = 0 since
a € W. This implies

a1:a2:a3:a420,
so a = 0. This shows that U N W = {0}, so by Proposition 1.45 we know
U+W =U®&W is a direct sum.

d
Exercise 1.C.24. A function f: R — R is called even if
f(=z) = f(z)
for all z € R. A function f: R — R is called odd if
f(=2) = —f(z)

for all x € R. Let U, denote the set of real-valued even functions on R and let U,
denote the set of real-valued odd functions on R. Show that RR = U, @ U.,.

Proof. 1. First, we check that U, and U, are subspaces of RR. As above, the zero
element of R® is the zero function z: R — R defined by z(z) = 0 for all z € R.
1.1. z € U, since z(—z) = 0 = z(z) for every € R. Similarly, z € U, since
z(—z) =0=—0= —z(x) for every z € R.
1.2. For any r € R, f, g € U, we know

(r-f)(=z) =r-(f(=2)) =7 (f(x)) = (r- )(z)
since f is even. This shows that r - f is even, i.e. that r - f € U,. Similarly
(f +9)(=2) = f(=2) + 9(—2) = f(z) + g(x) = (f + 9)(x)

since f and g are even, showing that f 4+ g € U,. This proves that U, is a subspace
of RE,



1.3. For any r € R, f, g € U,, we know

(r- f)(=z) =r-(f(=2) =7 (=f(2)) = =(r- f)(z)
since f is odd, showing that r - f € U,. Similarly

(f+9) (=) = f(==) + g(—z) = —f(x) —g(z) = =(f(z) + g(z)) = —(f + 9)(z)
since f and g are odd, showing that f + g € U,. This proves that U, is a subspace
of RE,

We will use Prop. 1.45 to show that RR = U, @ U,. We first show that U, N
U, = {z} (remembering that z is the zero element in R®), and then show that
U, + U, = RR.

2. Assume that f € U, NU,, or in other words that the function f is both even
and odd. Then for any z € R we have

f(@) = f(=x)

since f is even, but also that

since f is odd. Together this means that —f(z) = f(«), which implies that f(z) = 0.
But if f(xz) = 0 for all x € R, then f is the zero function z. This shows U.NU, = {z}.

3. For any g € RF, define functions g, and g, by
gz) +g(—w
(o) = 9) o)

2
and
z)—g(—x
o) = 9819
We claim that g, € U, and g, € U,. First we check that g. is even:
—x)+glx
() = )50
)+ g(—x
s o)
Next we check that g, is odd:
—z)—g(x
o) = 9 =910
_ —g@) +g(—a)
2
_ g@) —g(-a)
2
= —go(x).
We also have
—r)+g(x —x) —g(x
ot o) — AN H06) | gx) —o@)

2 2
SO ge + go = g. This shows that every function g can be written as the sum of an
even function g, and an odd function g,, proving that R¥ = U, + U,,.
By Prop. 1.45, we conclude that R® = U, @ U,. (]
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Question 1. Let S be a set, and let U be the vector space over F. Recall that U*
is the set of functions f : S — U. Given functions f,¢g € U and a € F, we define
f+geUanda-feU® by
(f+9)(x) = f(z) + g(x)
a-f(z)=a-(f(z))

Prove that U® is a vector space over F.

Proof. We need to go through the definition of vector space and check the following
conditions.

1. u+v=v+uforall u,veUS.

2. u+ (v+w) = (u+v)+w and (ab)v = a(bv) for all u,v,w € U® and all a,b € F
3. There exists an element 0 € U®, called the zero vector, such that v + 0 = v for
allv e U

4. For every v € U9, there exists w € U® such that v +w = 0

5. 1-v=uvforallveUS

6. a-(u+v)=a-u+a-vand (a+b)-v=a-v+b-vforall a,b € F and all
u,v € US

1. By definition of the sum of elements in U®, we have:
(u+v)(z) = u(z) + v(z)
=v(x) + u(x)
= (v+u)(z)

The second equality holds by the commutativity property of the vector space U.
Therefore u +v = v 4 u for all u,v € U”.
2. By definition of the sum of elements in U®, we have:

(u+ (v +w)(2) = u(x) + (v + w)()
= u(z) + (v() + w(z))

The associativity property of the vector space U shows that:
(u(z) + (v(z) + w(z)) = (u(z) +v(z)) + w(z)
= (u+v)(@) +w(z)
= ((u+v) + w)(z)

Therefore (u+ (v+w))(z) = ((u+v)+w)(xz). So we have u+ (v+w) = (u+v) +w.
By definition of scalar multiplication in U®, we have:

(a-(b-v))(z)=a-((b-v)(x))=a-(b-v(z))
The associativity property of the vector space U shows that:
ar (b o)) = (a-b) - o()
= ((a-b) - v)(x)

Therefore (a- (b-v))(z) = ((a-b) - v)(x). So we have a - (b-v) = (a-b) - v.
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3. The zero element in U® is the function z: S — U defined by z(x) = 0 for all
x € S. For every function v € U®, we have (v+2)(x) = v(x)+2(z) = v(2)+0 = v(2)
since 0 is the additive identity in U. Therefore v + z = v for all v € U”.

4. For every v € U®, the additive inverse in U is the function ©: S — U defined
by 0(x) = —v(x) for all z € S. We have (v+0)(z) = v(z)+0(x) = v(x)+(—v(z)) =
0 since —v(x) is the additive inverse of v(xz) € U. Therefore v + ¢ = 0, so ¥ is the
additive inverse of v € U¥.

5. Forallv € U, (1-v)(z) = 1-v(x) = v(x). Therefore 1-v = v for all v € U¥.

6. By definition of addition and scalar multiplication in U*, we have:

(@ (u+v)(z) =a-((ut+v)(z))
=a- (u(z) +v(z))

The distributive property of the vector space U shows that:
a- (u(z)+v(z)) =a u(z)+a-v(x)

Therefore (a - (u+v))(x) = (a-u+a-v)(z), so we have a- (u+v) =a-u+a-wv.
Similarly, by definition of addition and scalar multiplication in U®, we have:

((a+1b)-v)(z) = (a+b) - v(z)
The distributive property of the vector space U shows that:
(a+b)-v(x)=a-v(x)+b v(z)

Therefore ((a +b) - v)(z) = (a-v+b-v)(x), so we have (a+b)-v=a-v+b-v.
The statements above show that U/ satisfies all the conditions of a vector space
(see Definition 1.19 from our textbook), so U is a vector space over F. O

Question 2. Let U; = {(a,0,0)|a € F} and Uy = {(b,,0)|b € F}. There are both
subsets of 3.

a) Prove that U; and Us are subspaces of F3

b) Prove that Uy + Us = {(z,y,0]z,y € F)}

Proof. a.1) The zero element in F? is a vector z defined by z = (0,0,0). Therefore
z=1(0,0,0) € U;. For any r € F and a1 = (21,0,0), az = (x2,0,0) € Uy, we have
r-ay = (r-z1,0,0), a1 +as = (1 +22,0,0), therefore r-ay € Uy and a3 +ay € Us.
Hence U, is a subspace of F3.

a.2) z = (0,0,0) € Us, so Uy contains the zero element. For any ¢t € F and
b1 = (y1,41,0), ba = (y2,y2,0) € Us, we have 2z -by = (r-y1,7 - y1,0), by + b =
(y1 + y2,y1 + y2,0), therefore r - by € Us and by + by € Us. Hence Us is a subspace
of 3.



b) Generally speaking, if we are asked to prove that two sets A and B are equal,
the most common way is to show that A C B and B C A. So now let us denote
the set {(z,y,0)|x,y € F} by W.

First, we will show that U; + Us € W. For any a = (2,0,0) € Uy and b =
(y,v,0) € Uz, we have a + b = (z + y,y,0) € U, s0 Uy + Uy C W.

Second,we will show that W C Uy + Us, for any ¢ = (2z,y,0) € W, we can write
cas ¢ = ¢ + cg, here ¢; = (x —9,0,0) € Uy and ¢ = (y,y,0) € Us. Hence
W c Uy + Us.

Combining the two statements above, we have proved that U1 +Us = {(z,y,0)|z,y €
F). O

Question 3. Let V be a vector space, and let U; and Us be subspaces of V.
a) Their intersection Uy N Us consists of all vectors that belongs to both sub-
spaces:
UpNnUy={veV|jveU, and v € Uy}
Prove that U; N U, is always a subspace of V.

b) Their union U; U Us consists of all vectors that belong to either subspace:
UbuU;={veV]jveU; orveUs}
Prove that U; U Us is a subspace of V' if and only if one subspace in contained in
the other

Proof. a) Uy,Us are both subspaces of V, so 0 € Uy NUs. For any r € F and
a1,as € Uy NUsy, we know r-ay € Uy and r - a1 € Us (this is because Uy, Uy are
both vector spaces). We also have a1 +as € Uy, a1 +as € Us, hence r-a; € Uy NUs
and a1 + as € Uy NUs. Therefore U; N U, is a subspace of V.

b) Suppose Uy C Us, then Uy UUs = Us, so U; UUs is a subspace of V. We can
use the same argument to show that if Uy C Uy, then Uy U Uy = U; is a subspace
of V.

On the other hand, if U; U U; is a subspace, we assume Uy ¢ Uy and Uy ¢ Uy
and try to get a contradiction. Since U; ¢ Us, we can find an element u; € U; but
uy ¢ Uy (otherwise it means every element in U belongs to Us, so Uy C Us, which
contradicts with our assumption), and meanwhile we can find an element uy € Us
but uy ¢ U; (otherwise it means every element in Us belongs to Uy, so Uy C Uy,
which contradicts with our assumption).

Since this element u; is in Uy, we know wy € Uy U Us; similarly, since ug € Us,
we know us € Uy U Us. Because we have assumed that U; + U, is a vector space,
this implies thatu, + us € Uy U Us. So uy + us either equals some a € Uy or some
b e Us.

If u; +ue = a € Uy, then adding both sides of the equation by —u4, by definition
of the additive inverse and additive identity, we have

Uy = —uy +ur +us =a—uy € Uy.

But this contradicts the definition of us as an element that is not in U;.

If u; +us = b € Us, then adding both sides of the equation by —us, by definition
of the additive inverse and additive identity, we have u; = —us+us+uy = b—wug €
Us, which contradicts the definition of u; as an element that is not in Us.
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Summarizing the two statements above, we have a contradiction because u; +
ug € U UU,, but it does not belong to either U; or Us. Therefore our assumption
that neither subspace was contained in the other must have been wrong.

O

Question 4. Let U; = {(—a,qa,0)la € F}, let Uy = {(0,b, —b)|b € F}, and let
Us = {(c,0,—c)|c € F}. These are all subspaces of F3(you may assume this without
proof).

a) Describe the subspaces Uy + Uz 4+ Us by filling in the blank by an equation
involving z,y, and z:

U1+U2—|—U3:{(z,y,z) E]FB‘ }

b) Let W = Uy + Uy + Us. Is W the direct sum of Uy, Us, and Us? Prove or

disprove.

Proof. a) We fill in the blank with “z 4+ y + 2z = 0”. In other words, denote the set
{(z,y,2) € F3|z +y + 2 =0} by V; we claim that Uy + Uy + U3 = V.

a.1) First we will prove that Uy + Us + Us C V. For any

uy = (a,—a,0) € Uy, ug = (0,b,=b) € Us, ug = (¢,0,—c) € Us,
their sum is
up +us+uz=(a+c,—a+b,—b—c).

This vector which satisfies (a+c¢)+(—a+b)+(—b—c) = 0, therefore uy +us+ug € V.
Hence U; +Us +Us C V.

a.2) Next we will prove that V' C Uy + Uz 4+ Us. For any v = (z,y,2) € V, we
know that z = —x —y. So v =(0,0,0) 4+ (0, —y, y) + (z,0, —z). Here (0,0,0) € Uy,
(0, —y,y) € U, (2,0,—z) € Us, so v € Uy + Uz + Us. Therefore V C Uy + Uy + Us.

b) No. Fix any a € F which satisfies a # 0. We have
(07 07 0) = (_aa a, 0) + (07 —a, a) + (a’a 07 _a)

Each of these three vectors is nonzero, but (—a,a,0) € Uy, (0,—a,a) € Us,
(a,0,—a) € Us.
Hence we have more than one way to write 0 as a sum u; + us + u3, where each
u; € U; (besides the “trivial” way 0 = 04+0+0). By Prop. 1.44 from our textbook,
this proves that U; 4+ Us + Us is not a direct sum.
O

Question 5. Let U be the following subset of F*°:
U = {(v1,v2,v3...) € F®|v;43 = v; for all i }
Prove that U is a subspace of F>°.

Proof. The zero element z = (21, 22, 23, ...) € F*° is defined by z; = 0 for all ¢ € N.
Foreveryi €N, 2,43 =0=2;,80 2z € U.
For any = = (z1,22,23,...) €U, y = (y1,¥2,Y3,...) € U, and any r € F, we have
rex=(r-x,r- ca,r- x3,..) and +y = (r1 + y1, 2 + y2, 3 + Y3, ...).
Since z and y are in U, we know that x;,3 = z; and y;4+3 = y;, SO
r-xiyz3 =71 -z; and Ti43 + Yir3 = T; + ;-
This shows that r-z € U and x +y € U, so U is a subspace of F>°. O

Question 6. Say that a sequence v = (v1,va,v3...) € F® is periodic if there exists
some positive number k£ € N such that v;4; = v; for all 7. Let W be the set of all
periodic sequences. Is W a subspace of F*°7 Prove or disprove.
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Proof. Yes, W is a subspace of F*°. Let us say that a sequence v is “k-periodic” if
Vit = v; for all 7.

The zero element z = (z1, 22, 23, ...) € F*® is defined by z; = 0 for all < € N. For
every i € N, 2,11 = 0 = 2;, so z is 1-periodic. Therefore z € W.

For any © = (21, 22,23...) € W, y = (y1,92,¥3...) € W, and any r € F, assume
that = is k-periodic and y is m-periodic. This means x;4,r = z; for all 7, and
Yi+m = ¥; for all i. Then we have:

r-x=(r x,r x29,7 x3,...) and z +y = (r1 + y1, T2 + Y2, T3 + Y3, ...)-
Since
T -Zjppp =T-T;
we see that r - x is k-periodic. Hence r-x € W.

The more difficult part is to show that z + y is periodic. The difficulty comes
because x + y might not be k-periodic or m-periodic. However, it turns out that it
is (km)-periodic, as we now prove. For any i € N, we have

Ty = Titk
= Titk+k
= Ti4+3k

= Ti+mk

where we quoted the k-periodicity of x multiple times to go from each line to the
next (m times in total). Similarly,

Yi = Yi+m
= Yi+2m
= Yi+3m

= Yi+km

since y is m-periodic. Together, these imply that
Titkm T Yitkm = Ti + Yi.

This shows that « + y is (km)-periodic, so z + y € W. We conclude that W is a
subspace of F'*°. O



