Math 112-40, Mr. Church, Homework 6

Due at the beginning of class on Wednesday, November 4.
Please staple your homework.

1. In class on Friday we proved that every number n is divisible by some prime number, but in fact there is a stronger statement:
Prove that every number n is divisible by some prime number p satisfying $p \leq \sqrt{n}$.
2. In class on Friday we proved that if you assume there are only finitely many primes $p_{1}, p_{2}, \ldots, p_{k}$, you get a contradiction by building the number $N=p_{1} \times p_{2} \times \cdots \times p_{k}+1$. Work through the details of the argument to show that you get a contradiction if you assume the only prime numbers are $2,3,5$, and 7 . What number N do you build? Why can't it be divisible by 2 or 3 or 5 or 7 ? What is its prime factorization? ${ }^{1}$
3. Exercise 3.16.
4. Exercise 3.17.
5. Challenge question ${ }^{2}$: Prove the only "triplet of primes" is $3 / 5 / 7$; this fact was mentioned at the end of class on Friday. Mathematically, the question is: prove that the only number n for which $n, n+2$, and $n+4$ are all primes is $n=3$.
[^0]
[^0]: ${ }^{1}$ If you want another reference for how the proof goes, the book's proof of this theorem is on pages 101-102.
 ${ }^{2}$ Quite difficult; do the best you can.

