Math 112-40, Mr. Church, Homework 12 (last homework)

Due at the beginning of class on Wednesday, December 2. Please staple your homework.

- 1. Exercise 7.10.
- 2. Exercise 7.11(a).
- 3. We saw last week that -1 has a square root modulo a prime p if and only if $p \equiv 1 \pmod{4}$. Let's check this for a few examples:
 - (a) Find a square root of $-1 \mod 5$ (that is, a number x so that $x^2 \equiv -1 \pmod{5}$).
 - (b) Find a square root of -1 modulo 11.

Now we'll investigate a related phenomenon.

- (c) Find a square root of 5 modulo 11.
- (d) Find a square root of 11 modulo 5 (this may be easier than you think).

This pattern follows from a beautiful theorem of Gauss, called quadratic reciprocity:

Theorem (Quadratic reciprocity): If p and q are primes and both $p \equiv 1 \pmod{4}$ and $q \equiv 1 \pmod{4}$, then

p has a square root modulo $q \iff q$ has a square root modulo p.