Math 112-40, Mr. Church, Homework 12 (last homework)

Due at the beginning of class on Wednesday, December 2.
Please staple your homework.

1. Exercise 7.10.
2. Exercise 7.11(a).
3. We saw last week that -1 has a square root modulo a prime p if and only if $p \equiv 1(\bmod 4)$. Let's check this for a few examples:
(a) Find a square root of -1 modulo 5 (that is, a number x so that $x^{2} \equiv-1(\bmod 5)$).
(b) Find a square root of -1 modulo 11 .

Now we'll investigate a related phenomenon.
(c) Find a square root of 5 modulo 11 .
(d) Find a square root of 11 modulo 5 (this may be easier than you think).

This pattern follows from a beautiful theorem of Gauss, called quadratic reciprocity:
Theorem (Quadratic reciprocity): If p and q are primes and both $p \equiv 1(\bmod 4)$ and $q \equiv 1(\bmod 4)$, then

$$
p \text { has a square root modulo } q \quad \Longleftrightarrow \quad q \text { has a square root modulo } p \text {. }
$$

