Math 112-40, Mr. Church, Homework 11

Due at the beginning of class on Wednesday, November 25.
Please staple your homework.

Note that this assignment has two pages.

1. (a) Is 85,836 divisible by 9 ? Is $123,456,789$ divisible by 9 ? How about $987,654,321$? How about $385,291,476$? (If you don't know the trick to check whether a number is divisible by 9 , start asking around-one of your friends/roommates/stingrays can tell you.)
(b) Describe the method you used to find the answers in part (a). (You should describe your method well enough that I could follow your instructions and do it myself based on your description.)
2. Exercise 6.19.
3. Recall that the ring $\mathbb{Z} \times \mathbb{Z}$ is the set of pairs of integers (a, b), where addition and multiplication are "in each coordinate separately":

$$
(a, b)+(c, d)=(a+c, b+d) \quad \text { and } \quad(a, b) \cdot(c, d)=(a \cdot c, b \cdot d)
$$

For example,

$$
(2,3)+(10,15)=(12,18) \quad \text { and } \quad(3,4) \cdot(2,0)=(6,0)
$$

The multiplicative identity in this ring is the element $(1,1)$.
(a) Find all the elements of $\mathbb{Z} \times \mathbb{Z}$ that have a multiplicative inverse; that is, find all the elements of $U(\mathbb{Z} \times \mathbb{Z})$. (We actually did this in class a long time ago.)
(b) What is the order of the group $U(\mathbb{Z} \times \mathbb{Z})$?
(c) For each of the elements you found, find the order of that element in the group $U(\mathbb{Z} \times \mathbb{Z})$.

Now consider the similar ring $\mathbb{R} \times \mathbb{R}$, whose elements are pairs of real numbers (x, y) and addition and multiplication are again "in each coordinate separately":

$$
(x, y)+(z, w)=(x+z, y+w) \quad \text { and } \quad(x, y) \cdot(z, w)=(x \cdot z, y \cdot w)
$$

For example,

$$
(\pi, 4)+(\sqrt{2},-5)=(\pi+\sqrt{2},-1) \quad \text { and } \quad(\pi, 4) \cdot\left(\frac{1}{\pi}, \frac{1}{8}\right)=\left(1, \frac{1}{2}\right)
$$

(d) For which elements (x, y) of $\mathbb{R} \times \mathbb{R}$ will (x, y) have a multiplicative inverse? If it has one, what is the multiplicative inverse of (x, y) ?
4. Exercise 6.30.
5. Exercise 6.31.
6. Exercise 6.16.

