Part 5 of Reading Course

Vector fields, integral curves, and integral surfaces
Thomas Church

Derivations and vector fields. Recall that $C^{\infty}(M)$ denotes the algebrd ${ }^{1}$ of infinitely-differentiable real-valued functions on a manifold M. A derivation Φ on any algebra R is a linear transformation $\Phi: R \rightarrow R$ satisfying the "product rule"

$$
\Phi(f g)=\Phi(f) g+f \Phi(g) \quad \text { for all } f, g \in R
$$

Theorem A. If Φ is a derivation on $C^{\infty}(M)$, there exists a unique vector field V on M with $\Phi=$ ∂_{V}.

In Part 4 you hopefully proved Theorem A in the case $M=\mathbb{R}^{2}$. But in any case, you can consider the following two exercises:

Exercise 1. In the case $M=\mathbb{R}$, Theorem A states:
Let $\Phi: C^{\infty}(\mathbb{R}) \rightarrow C^{\infty}(\mathbb{R})$ be a linear transformation satisfying $\Phi(f g)=\Phi(f) g+f \Phi(g)$ for all functions $f, g \in C^{\infty}(\mathbb{R})$. Prove there exists a unique function u such that $\Phi(f)=u \cdot f^{\prime}$ for all f.
Write out the proof, including details, in this case.

Exercise 2. Say that you know Theorem A holds for $M=\mathbb{R}^{2}$. Can you use this to prove Theorem A for the 2 -sphere $M=S^{2}$, or other surfaces?

Integral curves. An integral curve for a vector field V on M is a curve $g(t): \mathbb{R} \rightarrow M$ whose derivative agrees with V, meaning $g^{\prime}(t)=V_{g(t)}$ for all t.
Exercise 3. (Very Hard, Very Important) If V is a vector field on \mathbb{R}^{2} (infinitely-differentiable, as always) and the magnitude $\left|V_{p}\right|$ is globally bounded, prove that there is an integral curve passing through every point p.
(You may assume that V is never vertical, if you like.)
Can you prove that the integral curve is unique?

[^0]Integral surfaces. Let V and W be two vector fields in \mathbb{R}^{3}, which at every point are linearly independent. Say that an integral surface for V and W is a surface S in \mathbb{R}^{3} such that V and W are both tangent to S at each point; in other words, at each point $p \in S$, the vectors V_{p} and W_{p} span the tangent plane of S. (We don't worry here about how to parametrize S.)

Exercise 4. Give an example of two vector fields V and W for which there exists no integral surface passing through the origin.

Exercise 5. Prove that if ∂_{V} and ∂_{W} commute, then there is an integral surface S passing through every point p. How can you say which points lie in the surface S ?
[It's OK if the surface is just a small region; i.e. you only need to worry about this near p.]

Exercise 6. Prove that if there exist real-valued functions α and β such that

$$
\partial_{V}\left(\partial_{W} f\right)-\partial_{W}\left(\partial_{V}(f)\right)=\alpha \partial_{V}(f)+\beta \partial_{W}(f),
$$

then there is an integral surface passing through every point p.
Remark regarding the last exercise: it is straightforward to check that the operator

$$
f \mapsto \partial_{V}\left(\partial_{W} f\right)-\partial_{W}\left(\partial_{V} f\right)
$$

is a derivation (just plug in $f g$ and check). So Theorem A says there is a unique vector field U such that

$$
\partial_{U}(f)=\partial_{V}\left(\partial_{W} f\right)-\partial_{W}\left(\partial_{V} f\right)
$$

The usual name for this vector field is $U=[V, W]$. So Exercise 6 says that if $[V, W]$ is a linear combination of V and W, then V and W have integral surfaces passing through every point.

[^0]: 1 "Algebra" means "vector space with a multiplication".

