Part 4 of Reading Course

Vector fields and derivations

Thomas Church

Notation. If M is a manifold, here is the standard notation:

- $C^{\infty}(M)$ = the vector space of infinitely-differentiable functions on M
- $\mathfrak{X}(M)$ = the vector space of vector fields on M
- $\Omega^k(M)$ = the vector space of k-covector fields on M (usually called differential k-forms)

Note that $\Omega^0(M)$ is the same as $C^{\infty}(M)$, since a 0-covector field is just a function.

An example of vector fields. Consider $M = \mathbb{R}^2 - \{0\}$. We have coordinates r and θ on M (ignore here that θ is not perfectly defined), which give covector fields dr and $d\theta$. From these we get two vector fields, for which the *standard notation* is $\frac{\partial}{\partial r}$ and $\frac{\partial}{\partial \theta}$, as the unique vector fields satisfying

$$dr(\frac{\partial}{\partial r}) = 1$$
 $dr(\frac{\partial}{\partial \theta}) = 0$ $d\theta(\frac{\partial}{\partial r}) = 0$ $d\theta(\frac{\partial}{\partial \theta}) = 1$

(note that 1 here is the constant function 1, and 0 is the constant function 0).

Exercise 1. Sketch the vector fields $\frac{\partial}{\partial r}$ and $\frac{\partial}{\partial \theta}$ (like, actually sketch them on paper, with arrows).

Exercise 2. Write $\frac{\partial}{\partial r}$ and $\frac{\partial}{\partial \theta}$ in terms of the basis $\frac{\partial}{\partial x}$, $\frac{\partial}{\partial y}$ for vector fields. (i.e. write each as $\alpha \frac{\partial}{\partial x} + \beta \frac{\partial}{\partial y}$ for some functions α and β)

Vector fields as operators. Given a vector field $V \in \mathfrak{X}(M)$, we obtain an operator (i.e. a linear transformation)

$$\partial_V \colon C^\infty(M) \to C^\infty(M)$$

defined as follows:

Given a function f, we need to define the function $\partial_V f$; its value at a point p is defined as follows. Let V_p be the vector at p determined by the vector field V. Then $(\partial_V f)(p)$ is the directional derivative of f at p in the direction of V_p :

$$(\partial_V f)(p) \coloneqq \lim_{\Delta t \to 0} \frac{f(p + \Delta t \cdot V_p) - f(p)}{\Delta t}$$

Exercise 3. Let $V = \frac{\partial}{\partial r}$ and $W = \frac{\partial}{\partial \theta}$. For each of the following functions f, compute $\partial_V f$ and $\partial_W f$: (a) $f = e^{x^2 + y^2}$; (b) $f = e^x$.

- **Exercise 4.** Check that if $V = \frac{\partial}{\partial r}$ and $W = \frac{\partial}{\partial \theta}$, then $\partial_V(\partial_W f) = \partial_W(\partial_V f)$ for all functions f. In other words, the operators ∂_V and ∂_W commute.
- **Exercise 5.** Exhibit two vector fields V and U on \mathbb{R}^2 (or on some subset of \mathbb{R}^2) for which ∂_V and ∂_U do *not* commute.
- Exercise 6. Very hard, most important, spend most of your time on this: Let $\Phi: C^{\infty}(\mathbb{R}^2) \to C^{\infty}(\mathbb{R}^2)$ be a linear transformation satisfying the "product rule" $\Phi(fg) = \Phi(f)g + f\Phi(g)$ for all functions $f, g \in C^{\infty}(\mathbb{R}^2)$. Prove that there exists a unique vector field V on \mathbb{R}^2 such that $\Phi = \partial_V$.

[Hint: if you like, you can first do this on \mathbb{R}^1 , where the question becomes: Let $\Phi: C^{\infty}(\mathbb{R}) \to C^{\infty}(\mathbb{R})$ be a linear transformation satisfying the "product rule" $\Phi(fg) = \Phi(f)g + f\Phi(g)$ for all functions $f, g \in C^{\infty}(\mathbb{R})$. Prove that there exists a unique function u such that $\Phi(f) = u \cdot f'$ for all f.]