Part 4 of Reading Course

Vector fields and derivations

Thomas Church

Notation. If M is a manifold, here is the standard notation:

- $C^{\infty}(M)=$ the vector space of infinitely-differentiable functions on M
- $\mathfrak{X}(M)=$ the vector space of vector fields on M
- $\Omega^{k}(M)=$ the vector space of k-covector fields on M (usually called differential k-forms) Note that $\Omega^{0}(M)$ is the same as $C^{\infty}(M)$, since a 0 -covector field is just a function.
An example of vector fields. Consider $M=\mathbb{R}^{2}-\{0\}$. We have coordinates r and θ on M (ignore here that θ is not perfectly defined), which give covector fields $d r$ and $d \theta$. From these we get two vector fields, for which the standard notation is $\frac{\partial}{\partial r}$ and $\frac{\partial}{\partial \theta}$, as the unique vector fields satisfying

$$
d r\left(\frac{\partial}{\partial r}\right)=1 \quad d r\left(\frac{\partial}{\partial \theta}\right)=0 \quad d \theta\left(\frac{\partial}{\partial r}\right)=0 \quad d \theta\left(\frac{\partial}{\partial \theta}\right)=1
$$

(note that 1 here is the constant function 1 , and 0 is the constant function 0).
Exercise 1. Sketch the vector fields $\frac{\partial}{\partial r}$ and $\frac{\partial}{\partial \theta}$ (like, actually sketch them on paper, with arrows).
Exercise 2. Write $\frac{\partial}{\partial r}$ and $\frac{\partial}{\partial \theta}$ in terms of the basis $\frac{\partial}{\partial x}, \frac{\partial}{\partial y}$ for vector fields.
(i.e. write each as $\alpha \frac{\partial}{\partial x}+\beta \frac{\partial}{\partial y}$ for some functions α and β)

Vector fields as operators. Given a vector field $V \in \mathfrak{X}(M)$, we obtain an operator (i.e. a linear transformation)

$$
\partial_{V}: C^{\infty}(M) \rightarrow C^{\infty}(M)
$$

defined as follows:
Given a function f, we need to define the function $\partial_{V} f$; its value at a point p is defined as follows. Let V_{p} be the vector at p determined by the vector field V. Then $\left(\partial_{V} f\right)(p)$ is the directional derivative of f at p in the direction of V_{p} :

$$
\left(\partial_{V} f\right)(p):=\lim _{\Delta t \rightarrow 0} \frac{f\left(p+\Delta t \cdot V_{p}\right)-f(p)}{\Delta t}
$$

Exercise 3. Let $V=\frac{\partial}{\partial r}$ and $W=\frac{\partial}{\partial \theta}$. For each of the following functions f, compute $\partial_{V} f$ and $\partial_{W} f$: (a) $f=e^{x^{2}+y^{2}}$; (b) $f=e^{x}$.

Exercise 4. Check that if $V=\frac{\partial}{\partial r}$ and $W=\frac{\partial}{\partial \theta}$, then $\partial_{V}\left(\partial_{W} f\right)=\partial_{W}\left(\partial_{V} f\right)$ for all functions f. In other words, the operators ∂_{V} and ∂_{W} commute.
Exercise 5. Exhibit two vector fields V and U on \mathbb{R}^{2} (or on some subset of \mathbb{R}^{2}) for which ∂_{V} and ∂_{U} do not commute.

Exercise 6. Very hard, most important, spend most of your time on this: Let $\Phi: C^{\infty}\left(\mathbb{R}^{2}\right) \rightarrow C^{\infty}\left(\mathbb{R}^{2}\right)$ be a linear transformation satisfying the "product rule" $\Phi(f g)=\Phi(f) g+f \Phi(g)$ for all functions $f, g \in C^{\infty}\left(\mathbb{R}^{2}\right)$. Prove that there exists a unique vector field V on \mathbb{R}^{2} such that $\Phi=\partial_{V}$.
[Hint: if you like, you can first do this on \mathbb{R}^{1}, where the question becomes: Let $\Phi: C^{\infty}(\mathbb{R}) \rightarrow C^{\infty}(\mathbb{R})$ be a linear transformation satisfying the "product rule" $\Phi(f g)=\Phi(f) g+f \Phi(g)$ for all functions $f, g \in C^{\infty}(\mathbb{R})$. Prove that there exists a unique function u such that $\Phi(f)=u \cdot f^{\prime}$ for all f.]

