Part 3 of Reading Course

Introduction to de Rham cohomology

Thomas Church

In Part 2 we learned about 2-covector fields. In particular, we learned about the operator $d: \{1\text{-covector fields}\} \rightarrow \{2\text{-covector fields}\}$. In this part we will start with a *different* way of combining 1-covector fields to obtain a 2-covector field.

Recall from [linear algebra class] that if v and w are elements of V^* then $v \wedge w$ is an element of $\bigwedge^2 V^*$; that is, if v and w are 1-covectors, then $v \wedge w$ is a 2-covector (of course, it's possible that $v \wedge w$ might be 0).

If ω and η are 1-covector fields, then applying the above operation at each point will give us a 2-covector field $\omega \wedge \eta$. This obeys the same rules as in [linear algebra class], such as

$$\omega \wedge \omega = 0$$
 and $\eta \wedge \omega = -(\omega \wedge \eta)$

In particular, considering the 1-covector fields dx and dy, we have $dx \wedge dx = 0$ and $dy \wedge dy = 0$ and $dy \wedge dx = -(dx \wedge dy)$.

Say we are on \mathbb{R}^2 , so that we can write the 1-covector fields ω and η as $\omega = \alpha dx + \beta dy$ and $\eta = \gamma dx + \delta dy$. Then we can compute:

$$\begin{split} \omega \wedge \eta &= (\alpha \, dx + \beta \, dy) \wedge (\gamma \, dx + \delta \, dy) \\ &= \alpha \, dx \wedge \gamma \, dx \qquad + \alpha \, dx \wedge \delta \, dy \qquad + \beta \, dy \wedge \gamma \, dx \qquad + \beta \, dy \wedge \delta \, dy \\ &= (\alpha \gamma) \, dx \wedge dx \qquad + (\alpha \delta) \, dx \wedge dy \qquad + (\beta \gamma) \, dy \wedge dx \qquad + (\beta \delta) \, dy \wedge dy \\ &= (\alpha \gamma) \cdot 0 \qquad + (\alpha \delta) \, dx \wedge dy \qquad - (\beta \gamma) \, dx \wedge dy \qquad + (\beta \delta) \cdot 0 \\ &= (\alpha \delta - \beta \gamma) \, dx \wedge dy \end{split}$$

Let $M = \mathbb{R}^2 - \{0\}$ be the plane excluding the origin. Consider the functions r and θ on M defined by $r = \sqrt{x^2 + y^2}$ and $\theta = \arctan(\frac{y}{x})$. Conversely, we have $x = r \cos \theta$ and $y = r \sin \theta$.

- **Exercise 1.** Convince yourself that $d\theta$ is really a well-defined 1-covector field on M, even though θ itself is not so well-defined (does it take values in $[0, 2\pi]$? or $[-\pi, \pi]$? or $[0, 2\pi)$? etc).
- **Exercise 2.** Show that at every point of M the covectors given by dr and $d\theta$ at that point give a basis for the covectors there. Conclude that every covector field on M can be written uniquely as $\zeta dr + \xi d\theta$ for functions ζ and ξ .
- **Exercise 3.** Find a function λ so that $dx \wedge dy = \lambda \cdot (dr \wedge d\theta)$.
- **Exercise 4.** Find a function μ so that $dr \wedge d\theta = \mu \cdot (dx \wedge dy)$.

Exercise 5. Do you recognize the functions λ and μ from anywhere? How are they related to each other?

(The operators discussed below exist on any manifold, but let's continue to assume we're on the plane \mathbb{R}^2 .) Recall from Part 2 that we defined a operator $d: \{1\text{-covector fields}\} \rightarrow \{2\text{-covector fields}\}$ by:

$$d(\alpha \, dx + \beta \, dy) = \left(\frac{\partial \beta}{\partial x} - \frac{\partial \alpha}{\partial y}\right) dx \wedge dy \tag{1}$$

And of course in Part 1 we defined the operator d: {functions} \rightarrow {1-covector fields} by:

$$df = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy$$

Exercise 6. Let f be any function and let ω be any 1-covector field ω . We can multiply these to get a new 1-covector field $f\omega$. Show that we have an equality of 2-covector fields

$$d(f\omega) = df \wedge \omega + f \wedge d\omega. \tag{2}$$

To prove (2), you must have used the definition (1). But actually (2) is the more basic property, because it doesn't depend on a choice of coordinates. And it turns out we could instead have *started* with (2) and deduced (1) from it, as you'll show in the following exercise.

Exercise 7. Assume that $d: \{1\text{-covector fields}\} \rightarrow \{2\text{-covector fields}\}$ satisfies the properties

$$d(f\omega) = df \wedge \omega + f \wedge d\omega, \qquad \qquad d(dx) = 0, \qquad \qquad d(dy) = 0$$

Without using the definition (1), prove from these assumptions that $d(\alpha \, dx + \beta \, dy) = \left(\frac{\partial \beta}{\partial x} - \frac{\partial \alpha}{\partial y}\right) dx \wedge dy.$

Exercise 8. Now say we are on \mathbb{R}^3 , where $df = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy + \frac{\partial f}{\partial z} dz$. Note that on \mathbb{R}^3 , any 1-covector field ω can be written as $d(\alpha dx + \beta dy + \gamma dz)$.

Assume that d: {1-covector fields} \rightarrow {2-covector fields} satisfies the properties (for any function f and any 1-covector field ω):

$$d(f\omega) = df \wedge \omega + f \wedge d\omega,$$
 $d(dx) = 0,$ $d(dy) = 0,$ $d(dz) = 0.$

Use these assumptions to find a formula for $d(\omega)$ (in terms of α, β, γ).

Exercise 9. Finally (still on \mathbb{R}^3) we would like to define an operator $d: \{2\text{-covector fields}\} \rightarrow \{3\text{-covector fields}\}$ satisfying the properties (for any function f and any 2-covector field φ):

$$d(f\varphi) = df \wedge \varphi + f \wedge d\varphi, \qquad \qquad d(dx \wedge dy) = 0, \qquad \qquad d(dy \wedge dz) = 0, \qquad \qquad d(dx \wedge dz) = 0.$$

From these assumptions, find a formula for $d\varphi$ for any 2-covector field φ .

(Hint: first, find a way to write the 2-covector field φ in coordinates, analogous to how we could write a 1-covector field ω as $\omega = \alpha \, dx + \beta \, dy + \gamma \, dz$.)

Exercise 10. You defined an operator $d: \{2\text{-covector fields}\} \rightarrow \{3\text{-covector fields}\}\$ in the previous exercise. (We are still on \mathbb{R}^3 .) Show that for any 1-covector fields ω and η , this operator satisfies

$$d(\omega \wedge \eta) = d\omega \wedge \eta - \omega \wedge d\eta. \tag{3}$$

(This is just like the equation (2), except that in (3) we have a - instead of a +.)

After doing these exercises, read the first 3 pages of Bott–Tu §1.

[[]Very helpful if you have access to Bott–Tu, but not essential if not.]