Part 3 of Reading Course

Introduction to de Rham cohomology

Thomas Church

In Part 2 we learned about 2-covector fields. In particular, we learned about the operator $d:\{1$-covector fields $\} \rightarrow\{2$-covector fields $\}$. In this part we will start with a different way of combining 1 -covector fields to obtain a 2 -covector field.

Recall from [linear algebra class] that if v and w are elements of V^{*} then $v \wedge w$ is an element of $\wedge^{2} V^{*}$; that is, if v and w are 1-covectors, then $v \wedge w$ is a 2-covector (of course, it's possible that $v \wedge w$ might be 0).

If ω and η are 1-covector fields, then applying the above operation at each point will give us a 2-covector field $\omega \wedge \eta$. This obeys the same rules as in [linear algebra class], such as

$$
\omega \wedge \omega=0 \quad \text { and } \quad \eta \wedge \omega=-(\omega \wedge \eta)
$$

In particular, considering the 1 -covector fields $d x$ and $d y$, we have $d x \wedge d x=0$ and $d y \wedge d y=0$ and $d y \wedge d x=-(d x \wedge d y)$.

Say we are on \mathbb{R}^{2}, so that we can write the 1 -covector fields ω and η as $\omega=\alpha d x+\beta d y$ and $\eta=\gamma d x+\delta d y$. Then we can compute:

$$
\begin{array}{rlrlrl}
\omega \wedge \eta & =(\alpha d x+\beta d y) \wedge & (\gamma d x+\delta d y) & & \\
& =\alpha d x \wedge \gamma d x & & +\alpha d x \wedge \delta d y & & +\beta d y \wedge \gamma d x \\
& =(\alpha \gamma) d x \wedge d x & & +(\alpha \delta) d x \wedge d y & & +(\beta \gamma) d y \wedge d x \\
& =(\alpha \gamma) \cdot 0 & & +(\alpha \delta) d x \wedge d y & & -(\beta \gamma) d x \wedge d y d y \\
& =(\alpha \delta-\beta \gamma) d x \wedge d y & & +(\beta \delta) \cdot 0
\end{array}
$$

Let $M=\mathbb{R}^{2}-\{0\}$ be the plane excluding the origin. Consider the functions r and θ on M defined by $r=\sqrt{x^{2}+y^{2}}$ and $\theta=\arctan \left(\frac{y}{x}\right)$. Conversely, we have $x=r \cos \theta$ and $y=r \sin \theta$.

Exercise 1. Convince yourself that $d \theta$ is really a well-defined 1 -covector field on M, even though θ itself is not so well-defined (does it take values in $[0,2 \pi]$? or $[-\pi, \pi]$? or $[0,2 \pi)$? etc).

Exercise 2. Show that at every point of M the covectors given by $d r$ and $d \theta$ at that point give a basis for the covectors there.
Conclude that every covector field on M can be written uniquely as $\zeta d r+\xi d \theta$ for functions ζ and ξ.
Exercise 3. Find a function λ so that $d x \wedge d y=\lambda \cdot(d r \wedge d \theta)$.
Exercise 4. Find a function μ so that $d r \wedge d \theta=\mu \cdot(d x \wedge d y)$.

Exercise 5. Do you recognize the functions λ and μ from anywhere? How are they related to each other?
(The operators discussed below exist on any manifold, but let's continue to assume we're on the plane \mathbb{R}^{2}.)
Recall from Part 2 that we defined a operator d : \{1-covector fields $\} \rightarrow\{2$-covector fields $\}$ by:

$$
\begin{equation*}
d(\alpha d x+\beta d y)=\left(\frac{\partial \beta}{\partial x}-\frac{\partial \alpha}{\partial y}\right) d x \wedge d y \tag{1}
\end{equation*}
$$

And of course in Part 1 we defined the operator $d:\{$ functions $\} \rightarrow\{1$-covector fields $\}$ by:

$$
d f=\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y
$$

Exercise 6. Let f be any function and let ω be any 1-covector field ω. We can multiply these to get a new 1 -covector field $f \omega$. Show that we have an equality of 2 -covector fields

$$
\begin{equation*}
d(f \omega)=d f \wedge \omega+f \wedge d \omega \tag{2}
\end{equation*}
$$

To prove (2), you must have used the definition (11). But actually (2) is the more basic property, because it doesn't depend on a choice of coordinates. And it turns out we could instead have started with (2) and deduced (1) from it, as you'll show in the following exercise.

Exercise 7. Assume that $d:\{1$-covector fields $\} \rightarrow\{2$-covector fields $\}$ satisfies the properties

$$
d(f \omega)=d f \wedge \omega+f \wedge d \omega, \quad d(d x)=0, \quad d(d y)=0
$$

Without using the definition (1), prove from these assumptions that $d(\alpha d x+\beta d y)=\left(\frac{\partial \beta}{\partial x}-\frac{\partial \alpha}{\partial y}\right) d x \wedge d y$.

Exercise 8. Now say we are on \mathbb{R}^{3}, where $d f=\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y+\frac{\partial f}{\partial z} d z$. Note that on \mathbb{R}^{3}, any 1-covector field ω can be written as $d(\alpha d x+\beta d y+\gamma d z)$.
Assume that $d:\{1$-covector fields $\} \rightarrow\{2$-covector fields $\}$ satisfies the properties (for any function f and any 1-covector field ω):

$$
d(f \omega)=d f \wedge \omega+f \wedge d \omega, \quad d(d x)=0, \quad d(d y)=0, \quad d(d z)=0 .
$$

Use these assumptions to find a formula for $d(\omega)$ (in terms of α, β, γ).
Exercise 9. Finally (still on \mathbb{R}^{3}) we would like to define an operator $d:\{2$-covector fields $\} \rightarrow\{3$-covector fields $\}$ satisfying the properties (for any function f and any 2-covector field φ):
$d(f \varphi)=d f \wedge \varphi+f \wedge d \varphi, \quad d(d x \wedge d y)=0, \quad d(d y \wedge d z)=0, \quad d(d x \wedge d z)=0$.
From these assumptions, find a formula for $d \varphi$ for any 2-covector field φ. (Hint: first, find a way to write the 2 -covector field φ in coordinates, analogous to how we could write a 1-covector field ω as $\omega=\alpha d x+\beta d y+\gamma d z$.)

Exercise 10. You defined an operator $d:\{2$-covector fields $\} \rightarrow\{3$-covector fields $\}$ in the previous exercise.
(We are still on \mathbb{R}^{3}.) Show that for any 1 -covector fields ω and η, this operator satisfies

$$
\begin{equation*}
d(\omega \wedge \eta)=d \omega \wedge \eta-\omega \wedge d \eta . \tag{3}
\end{equation*}
$$

(This is just like the equation (2), except that in (3) we have a - instead of a +.)
After doing these exercises, read the first 3 pages of Bott-Tu $\S 1$.
[Very helpful if you have access to Bott-Tu, but not essential if not.]

