Part 2 of Reading Course

Introduction to de Rham cohomology

Thomas Church

In Part 1 we had the following exercise: Let $\omega=\alpha d x+\beta d y$ be a covector field on \mathbb{R}^{2}. Describe precise conditions on α and β that guarantee that there does exist a function f with $d f=\omega$.

Your answer ${ }^{1]}$ was that $\int \alpha d x-\int \beta d y$ should be a function of the form $g(x)+h(y)$. But this is a global condition, in that we need to look at the whole plane to detect it. (It would become quite a bit more complicated if our functions were not defined on the whole plane, for example.)

Let us now give a local condition, by differentiating instead of integrating.
Exercise 1. (Easy) Let $\omega=\alpha d x+\beta d y$ be a covector field on \mathbb{R}^{2}. Show that if $\omega=d f$ for some infinitely differentiable function f, then

$$
\begin{equation*}
\frac{\partial \beta}{\partial x}=\frac{\partial \alpha}{\partial y} . \tag{*}
\end{equation*}
$$

Exercise 2. Show that the condition ($*$) is also sufficient on \mathbb{R}^{2} : if a covector field $\omega=\alpha d x+\beta d y$ satisfies $(*)$, then there exists a function f with $d f=\omega$.

Combining these two exercises, we could define a function Φ from covector fields to functions:

$$
\Phi(\alpha d x+\beta d y)=\frac{\partial \beta}{\partial x}-\frac{\partial \alpha}{\partial y}
$$

This has the property that ω can be written as $\omega=d f$ if and only if $\Phi(\omega)=0$. However, this function Φ depends too much on a particular choice of coordinates. The value of Φ should not really be thought of as a function, but rather a 2-covector field.
Definition. Let V be the space of vectors (at a point in \mathbb{R}^{2}, say). A vector is an element of V, and a covector is an element of the dual space V^{*}. We now introduce a new definition: a 2-covector is an element of $\Lambda^{2} V^{*}$.

If V is 2 -dimensional, then V^{*} is 2 -dimensional, and so we know from [linear algebra class] that $\bigwedge^{2} V^{*}$ is $\binom{2}{2}=1$-dimensional. If $d x$ and $d y$ give our basis for V^{*}, then $d x \wedge d y$ is the basis vector in $\bigwedge^{2} V^{*}$.

A 2-covector field consists of a 2 -covector at every point. At every point $p \in \mathbb{R}^{2}$, the 2 -covector must be some multiple of $d x \wedge d y$, so we can describe a 2-covector field on the plane as $\varphi=\gamma d x \wedge d y$ for some function γ.

Instead of Φ above (which you can now forget about forever), we define a function d from covector fields to 2 -covector fields by:

$$
d(\alpha d x+\beta d y)=\left(\frac{\partial \beta}{\partial x}-\frac{\partial \alpha}{\partial y}\right) d x \wedge d y
$$

We can then restate Exercises 1 and 2:
Ex. 1: $d(d f)=0$ for any function $f \quad$ Ex. 2: if $d \omega=0$, then $\omega=d f$ for some function f.
Exercise 3. Let $\varphi=\gamma d x \wedge d y$ be a 2 -covector field on \mathbb{R}^{2}.
Prove that there exists some 1-covector field $\omega=\alpha d x+\beta d y$ with $d \omega=\varphi$.
[You can read $\S 7.6$ of Eliashberg's notes if you have them, but not necessary.]

[^0]
[^0]: ${ }^{1}$ [For future readers: if you did not solve that exercise, stop skipping ahead and go back to Part 1 ! And take the time to understand why that answer is correct.]

